Brechin/Lagoon City Sewage Treatment Plant

Annual Wastewater Performance Report

Prepared For: The Township of Ramara

Reporting Period of January 1st – December 31st, 2023

Issued: March 28, 2024 Revision: 0

Operating Authority:

Table of Contents

Backgrour	nd1
Summa	ry and Interpretation of Monitoring Data
Summary	of Influent Flow Data2
Hydrualic	Reserve Capacity3
Summary	of Effluent Flow Data3, 4
Final Efflu	ent Parameter Summary6
Descriptio	n of Operating Problems Encountered10
·	of Maintenance
-	of Effluent Quality Ensurance and Control Measures11, 12
	of Calibration and Maintenance on Effluent Monitoring Equipment12
•	of Efforts Made and Results Achieved to Meet Effluent Objective12, 13
•	
	f Sludge Generated in Reporting Period
•	of Complaints Received during the Reporitng Period18
	of By-passes, Spills and Other Discharges18
Status upd	ate on Initial Effluent Characterization18
Any other	information the District Manger Requires from time to time18
Summary	of Efforts Made to Reduce Collection System Overflows18, 19
List of Table	<u>es</u>
Table 1	Historical Sewage Flows and Generation Rates
Table 2	Minimum Raw Sewage Sampling Requirements
Table 3	Minimum Effluent Sampling Requirements
Table 4 Table 5	2023 Annual Average Concentration and Loading Monthly Septage Volumes
Table 6	Brechin Lagoon City WWTP Operational Challenges
Table 7	Brechin/Lagoon City WWTP – Summary of Influent and Final Effluent Monitoring Equipment
Table 8	Efforts Made to Meet the Effluent Objectives of Condition 9
Table 9	Monthly CBOD5 Final Effluent Concentration Objective Comparisons
Table 10 Table 11	Monthly TSS Final Effluent Concentration Objective Comparisons
Table 11	Monthly TP Final Effluent Concentration Objective Comparisons Monthly E. Coli Final Effluent Concentration Objective Comparisons
Table 13	Monthly pH Final Effluent Concentration Objective Comparisons
Table 14	Weekly Final Effluent pH, Temperature and Calculated Un-ionized Ammonia
Table 15	Monthly Influent Sample Result Concentration Averages
Table 16	Monthly Sludge Generation Volumes

Appendicies

Appendix I Performance Assessment Report

Appendix II Annual Calibration Reports

Appendix III Biosolids Summary

Background:

The Environmental Compliance Approval (ECA) No. 1114-745MQT issued on June 6th, 2007 was revoked and replaced by ECA No. 8497-8D3TU7 issued on June 28th, 2012. The Ontario Clean Water Agency was the operating authority during the reporting period January 1st-December 31st, 2023.

The Brechin/Lagoon City Sewage Works complies with all requirements of the regulating authorities and operates under:

- Environmental Compliance Approval (ECA) No. 8497-8D3TU7 issued June 28, 2012
- Environmental Compliance Approval (CLI-ECA) No. 147-W601 issued April 5, 2023

Environmental Certificate of Approval (ECA) No. 8497-8D3TU7 Section 9(5) requires the Performance Report to contain the following:

- a) Summary and interpretation of all monitoring data and a comparison to the effluent limits outlined in Condition 5, including on overview of the success and adequacy of the sewage Works;
- b) a description of any operating problems encountered and corrective actions taken;
- c) a summary of all maintenance carried out on any major structure, equipment, apparatus, mechanism or thing forming part of the Works;
- d) a summary of any effluent quality assurance or control measures undertaken in the reporting period;
- e) a summary of the calibration and maintenance carried out on all effluent monitoring equipment;
- f) a description of efforts made and results achieved in meeting the Design Objectives of Condition 4;
- g) a tabulation of the volume of sludge generated in the reporting period, an outline of anticipated volumes to be generated in the next reporting period and a summary of the locations to where the sludge was disposed;
- h) a summary of any complaints received during the reporting period and any steps taken to address the complaints;
- i) a summary of all By-pass, spill or abnormal discharge events;
- j) Status update of the initial effluent characterization as per Condition 8 subsection (1) until it has been completed and the required report has been submitted; and
- k) any other information the District Manager requires from time to time

Environmental Compliance Approval (CLI-ECA) No. 147-W601 issued April 5, 2023 Section 4.6 requires the Performance Report to contain the following:

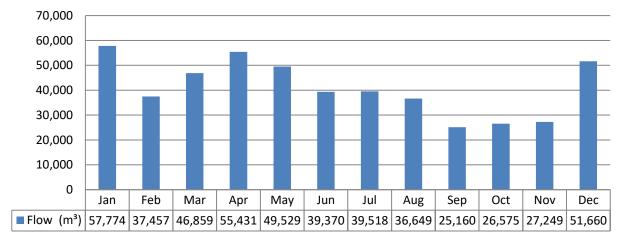
 a) A summary of all required monitoring data along with an interpretation of the data and any conclusion drawn from the data evaluation about the need for future modifications to the Authorized System or system operations.

- b) A summary of any operating problems encountered and corrective actions taken.
- c) A summary of all calibration, maintenance and repairs carried out on any major structure, Equipment, apparatus, mechanism, or thing forming part of the Municipal Sewage Collection System.
- d) A summary of complaints related to the Sewage Works received during the reporting period and nay steps taken to address the complaints.
- e) A summary of Alterations to the Authorized System within the reporting period that are authorized by this Approval including a list of Alterations that pose a Significant Drinking Water Threat.
- f) A summary of all Collection System Overflow(s) and Spill(s) of Sewage, including:
 - i) Dates;
 - ii) Volumes and durations
 - iii) If applicable, loading for total suspended solids, BOD, total phosphorus, and total Kjeldahl nitrogen, and sampling results for E. coli;
 - iv) Disinfection, if any; and
 - v) Any adverse impact(s) and corrective actions, if applicable.
- g) A summary of efforts made to reduce Collection System Overflows, Spills, STP Overflows, and/or STP Bypasses, including items, as applicable:
 - i) A description of projects undertaken and completed in the Authorized System that result in overall overflow reduction or elimination including expenditures and proposed projects to eliminate overflows with estimated budget forecast for the year following that for which the report is submitted.
 - ii) Details of the establishment and maintenance of a PPCP, including a summary of project progresses compared to the PPCP's timelines.
 - iii) An assessment of the effectiveness of each action taken.
 - iv) An assessment of the ability to meet Procedure F-5-1 or Procedure F-5-5 objectives (as applicable) and if able to meet the objectives, an overview of next steps and estimated timelines to meet the objectives.
 - v) Public reporting approach including proactive efforts.

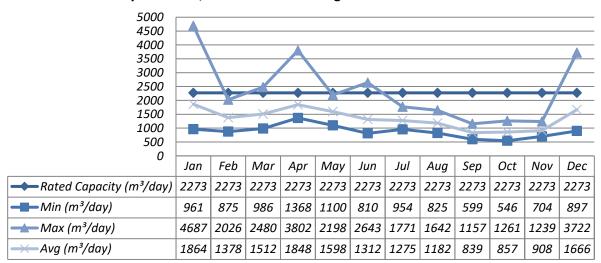
This report will show that the Ontario Clean Water Agency has made every attempt to achieve its goals through its operational performance. This performance was enhanced through the use of an electronic process data collection database, an electronic maintenance and work order database, an electronic operational excellence database, a training program focused on providing the right skills to staff - also captured and tracked by the use of an electronic database and a multi-skilled, flexible workforce.

This report will show that the requirements of the facility ECA including effluent monitoring and reporting requirements were consistently met and that effluent quality was consistently within ECA requirements.

ECA No. 8497-8D3TU7 Condition 9(5)(a)


Summary of Influent Flow Data

Environmental Compliance Approval (ECA) No. 8497-8D3TU7, issued for the Brechin/Lagoon City WWTP Condition 9(5)(a) requires a Summary and interpretation of all monitoring data and a comparison to the effluent limits outlined in Condition 5, including on overview of the success and adequacy of the sewage Works.


Condition 4(2)(b) of the (ECA) No. 8497-8D3TU7 indicates best efforts are to be made to operate at the rated capacity of the works. The rated capacity for the Brechin/Lagoon City Wastewater Treatment Plant is 2,273 m^3 /day and the annual average daily influent flow was 1,351.32 m^3 /day or 59.45 % of the rated capacity.

The total Influent flow in 2023 was 493,230.30 m³

Graph 1: 2023 Influent Flow Monthly Totals

Graph 2: 2023 Influent Daily Minimum, Maximum and Average Flows

Note: The above table shows exceedances in maximum flows during January, March, April, June and December. The spikes in flows were due to weather events/snowmelt in correlation with significant inflow and infiltration during these weather events. However, the average daily flow for the works was below the rated capacity.

Brechin Lagoon City Sewage Works Historical Flows

Table 1: Historical Sewage Flows and Generation Rates

Year	Number of Connections*	Equivalent Population**	Average Daily Flow (m³/day)	Maximum Daily Flow (m³/day)	Rated Capacity (m³/day)	Sewage Generation Rate (L/cap/day)
2013	1159	2408	1341	3204	2273	557
2014	1159	2414	1641	5094	2273	681

2015	1162	2414	1262	3313	2273	523
2016	1165	2420	1255	4735	2273	517
2017	1170	2431	1566	4213	2273	644
2018	1174	2439	1430	4260	2273	586
2019	1175	2441	1481	3686	2273	607
2020	1179	2650	1393	3462	2273	526
2021	1179	2650	1257	3995	2273	474
2022	1140	2391	1165	3853	2273	487
2023	1142	2395	1351	4687	2273	564
3 Year Average		2564	1272	3995	2273	508

^{*}The number of connections were recalculated by the Township of Ramara, the number of connections in 2023 reflect the number that will be used going forward.

Note: Typically, the system is well under the design capacity, significant inflow and infiltration during wet weather events skew the reserve capacity results.

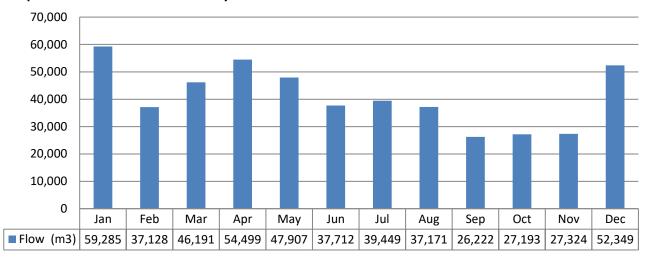
Hydraulic Reserve Capacity

In accordance with the MECP Procedure D-5-1, the reserve capacity is calculated by the following formula: Hydraulic Reserve Capacity= Design Flow- Committed Flow

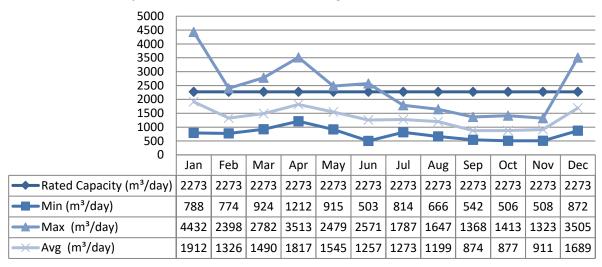
The design flow is equal to the maximum permissible flow approved by the Amended Environmental Compliance Approval. (ECA) No. 8497-8D3TU7 maximum permissible flow is: 2273 m³/day. The committed flow is equal to the total expected flow by the existing and proposed connections based on the previous 3-year average daily flow.

The built-out service area of the Brechin/Lagoon City Sewage Works has a total of 1269 units. The three-year (2021-2023) average sewage generation rate is: 508 L/cap/day. With the current population of 2395 there is a projection of 1,217 m³/day of committed sewage flow. The estimated hydraulic reserve capacity for the Brechin Lagoon City Sewage Works in 2023 is 1056 m³/day.

Summary of Effluent Flow Data


Environmental Compliance Approval (ECA) No. *8497-8D3TU7*, issued for the Brechin/Lagoon City WWTP Condition 9(5)(a) requires a summary and interpretation of all monitoring data and a comparison to the effluent limits outlined in Condition 5, including on overview of the success and adequacy of the sewage Works.

Condition 4(2)(b) of the (ECA) No. 8497-8D3TU7 indicates best efforts are to be made to operate at the rated capacity of the works. The rated capacity for the Brechin/Lagoon City Wastewater Treatment Plant is 2,273 m³/day and the annual average daily effluent flow was 1,349.12m³/day or 59.4 % of the rated capacity


The total effluent flow in 2023 was 492 430 m³

^{**}Based on estimated service connections in Lagoon City and Brechin: 1000 and 152 single family dwellings. The estimated population in Lagoon City: 2,000 (based on a population density of 2.0 persons per dwelling), and the estimated population in Brechin: 395 (based on a population density of 2.6 persons per dwelling). Assumptions made on location of new developments for 2023 connections for population estimation. Note: This calculation was completed based on current connections in the system, growth within the collection system has not been considered.

Graph 3: 2022 Effluent Flow Monthly Totals

Graph 4: 2023 Effluent Daily Minimum, Maximum and Average Flows

Note: The above table shows exceedances in maximum flows during January through June and December. The spikes in flows were due to weather events/snowmelt in correlation with significant inflow and infiltration during these weather events. However, the average daily flow for the works was below the rated capacity.

Summary of Sampling Frequency

ECA No. 8497-8D3TU7 Condition 7(3) describes the requirement for sample collection at the following locations, frequencies and by means of the specified sample type and analyzed for each parameter listed and all results recorded:

Table 2: Minimum Raw Sewage Sampling Requirements

Influent Sampling Point					
Parameters Sample Type Frequency					
BOD5	8 Hour Daytime Composite	Monthly			
Total Suspended Solids	8 Hour Daytime Composite	Monthly			
Total Phosphorus 8 Hour Daytime Composite Monthly					
Total Kjeldahl Nitrogen	8 Hour Daytime Composite	Monthly			

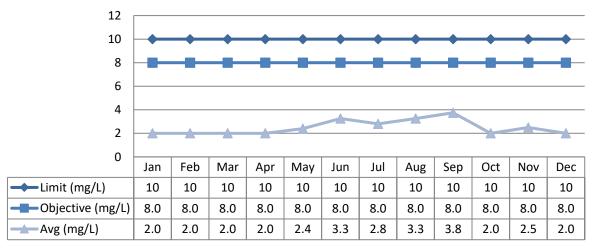
Table 3: Minimum Effluent Sampling Requirements

Final Effluent Sampling Point				
Parameters	Sample Type	Frequency		
CBOD5	24-Hour Composite	Weekly		
Total Suspended Solids	24-Hour Composite	Weekly		
Total Phosphorus	24-Hour Composite	Weekly		
Total Ammonia Nitrogen	24-Hour Composite	Weekly		
Nitrates	24-Hour Composite	Weekly		
рН	Grab/Probe	Weekly		
Temperature	Grab/Probe	Weekly		
E. coli	Grab	Weekly		

Final Effluent Parameter Summary

The following tables provide a summary of the monitoring data for the Brechin/Lagoon City WWTP compared to the effluent limits and objectives outlined in Condition 4 and 5 of ECA No. 8497-8D3TU7.

A summary of the Final Effluent and Raw Sewage monitoring data is contained in Appendix I of this report.

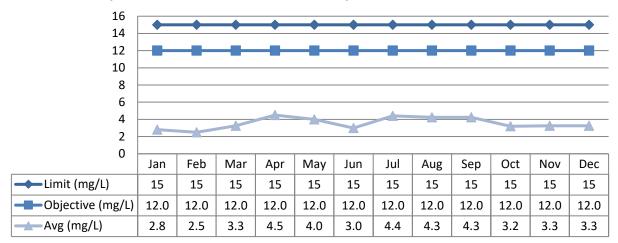

<u>Carbonaceous Biochemical Oxygen Demand (CBOD5)</u>

ECA No. 8497-8D3TU7 sets the CBOD5 monthly average concentration limit at 10.00 mg/L and the objective at 8.0 mg/L. The monthly CBOD5 average concentration results throughout 2023 were in compliance with the limits and objectives outlined in ECA No. 8497-8D3TU7.

CBOD5 Monthly Average Concentration

The monthly CBOD5 average concentration limit and monthly concentration objective were met each month in 2023.

Graph 5: 2023 Monthly CBOD5 Final Effluent Concentration Comparisons



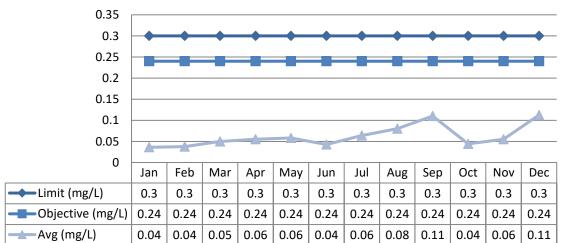
Total Suspended Solids (TSS)

ECA No. 8497-8D3TU7 sets the TSS monthly average concentration limit at 15.0 mg/L and the objective at 12.0 mg/L. The monthly TSS average concentration results throughout 2023 were in compliance with the limits and objectives outlined in ECA No. 8497-8D3TU7.

Total Suspended Solids Monthly Average Concentration

The monthly TSS monthly average concentration limit and monthly concentration objective were met each month in 2023.

Graph 6: 2023 Monthly TSS Final Effluent Concentration Comparisons


Total Phosphorus (TP)

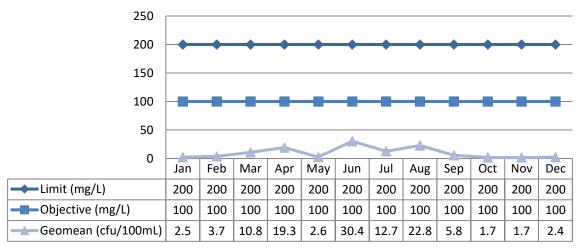
ECA No. 8497-8D3TU7 sets the TP monthly concentration limit at 0.30 mg/L, the objective at 0.24mg/L and the annual average waste loading at 249 kg/year. The monthly TP average concentration results and annual average waste loading results throughout 2023 were in compliance with the limits and objectives outlined in ECA No. 8497-8D3TU7.

Condition 5(2) of ECA No. 8497-8D3TU7 lists the Lake Simcoe Phosphorus Reduction Strategy effluent limits. These limits are set at an annual average concentration of 0.15 mg/L and annual average loading of 124 kg/Year.

Total Phosphorus Monthly Average Concentration

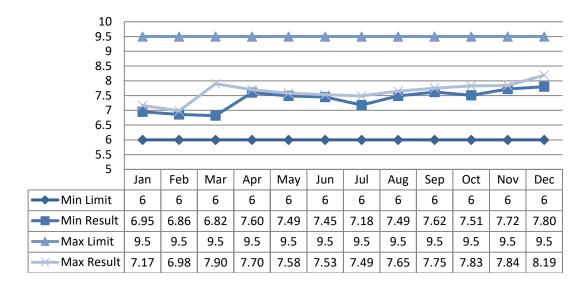
The monthly TP average concentration limit and monthly concentration objective were met each month in 2023.

Graph 7: 2023 Monthly Total Phosphorus Final Effluent Concentration Limit Comparisons

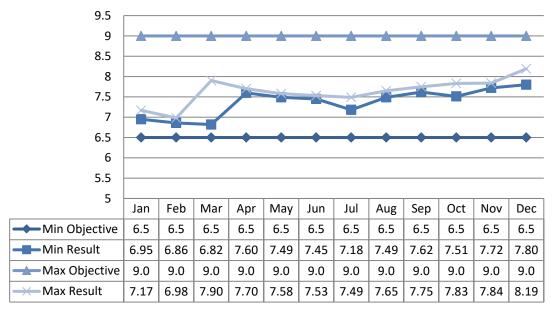

Table 4: 2023 Annual Average Concentration and Loading

Parameters	2023 Annual Average Concentration (mg/L)	Lake Simcoe Annual Average Concentration Limit /Objective	2023 Annual Average Loading (Kg/year)	Annual Loading Limit (Kg/year)	Lake Simcoe Annual Concentration Limit/Objective (mg/L)	Compliant (Y/N)
Total Phosphorus	0.06	0.15	30.53	249	124	Yes

E. Coli


ECA No. 8497-8D3TU7sets the monthly geometric mean density of E. Coli at 200 cfu/100mL and an objective of 100 cfu/100ml. The monthly geomean limit was met each month in 2023. The monthly geomean objective was met every month in 2023.

Graph 9: 2023 Monthly E. Coli Final Effluent Geometric Mean Comparisons



pН

ECA No. *8497-8D3TU7* has a pH compliance limit within the range of 6.0 to 9.5 and an objective within the range of 6.5-9.0, inclusive, at all times. The pH of the final effluent ranged from 6.69-7.71 throughout 2023 which is within the ECA compliance limit at all times.

Graph 11: 2023 Monthly pH Final Effluent Concentration Objectives Comparisons

Summary of Septage Received

The Brechin/Lagoon City Wastewater Treatment Plant accepts septage from licensed haulers. See Table 4 for summary of volumes received in 2023.

Table 5: Monthly Septage Volumes

Table of Months, copies 80 to annies			
Month	Volume (m³)		
January	23.47		
February	5.68		
March	35.39		
April	0.00		
May	56.78		
June	77.60		
July	30.28		
August	7.57		

September	0.00
October	0.00
Octobei	0.00
November	30.28
December	227.12
Total	494.19

ECA No. 8497-8D3TU7 Condition 9(5)(b) - Description of Operating Problems

ECA #8497-8D3TU7_Condition 9(5)(b) states that the annual performance report shall contain "a description of any operating problems encountered and corrective actions taken."

The following details describe all operating problems encountered during the reporting period and the corrective actions taken:

Table 6: Brechin Lagoon City WWTP Operational Challenges

Month	Challenges	Corrective Actions
lamiami	Elevated flows	Adjust plant flaus
January	Elevated flows	Adjust plant flows
February	Polymer pump dosing issue	Replace pump
March	Power failure	Monitor backup power
April	Elevated flows	Adjust plant flows
	Plant 1 clarifier pulley failure	Replace failed bearing
July	Plugged syphon on clarifier	Clean and re-prime
August	Pumping Station #4, Pump #1 failure.	Electrician contacted to reset/test pump #1.
September	Level alarms at Pump Station 2	Hydro one attended site and addressed voltage
		issues
	Low basin alarm	Adjust plant flow
	Plant 1 screw pump not starting	Technician troubleshoot and repair control
		program
October	Sludge settling and weed growth in	Clean basin 2/3
	basins	
	High water at Pump Station 2	Reset and test pumps
November	Low basin alarm	Adjust plant flow
	Elevated flows	Adjust flows and monitor facility
December	Elevated flows	Adjust flows and monitor facility

ECA No. 8497-8D3TU7 Condition 9(5)(c) – Summary of Maintenance

ECA No. 8497-8D3TU7 Condition 11(4)(e) states that the annual performance report shall contain summary of all maintenance carried out on any major structure, equipment, apparatus or mechanism forming part of the Works."

Routine maintenance and operation of the Brechin/Lagoon City Wastewater Treatment Plant and Sewage Pumping Stations in 2023 consisted of the following:

- Pumps station 2 pumps and piping replaced
- Replace meter chamber sump pump float
- Replace Alum Tank level sensor
- Repair digester tank butterfly valves
- Purchase Spare aerator
- Repair failed aerator
- Replace valve chamber shorted out receptacle.
- Install new polymer mixing system
- Adjusted chemical dosages
- Adjusted the speed of the screw conveyor to match incoming flows
- Attended to Hydro failures
- Blew out and restarted return activated sludge siphons
- Changed the oil and filters in the digester blowers
- Cleaned secondary clarifiers
- Collected samples as per the ECA
- Conducted settleability tests of the MLSS
- Decanted the digesters to aeration basin
- De-iced mechanical aerators
- Exercised generators
- Flushed chemical pumps and lines
- Greased bearings of screw conveyor
- Observed speciation of microorganisms in MLSS with a microscope
- Mixed polymer solutions
- Performed routine maintenance and repair of pumps
- Pulled and cleaned or replaced UV bulbs
- Pump Stations Cleaned
- Respond to emergency alarms
- Wasted sludge as required to maintain appropriate MLSS concentration

ECA No. 8497-8D3TU7Condition 9(4)(d) – Summary of Effluent Quality Assurance or Control Measures Undertaken

ECA No. 8497-8D3TU7Condition 9(4)(d) states that the annual performance report shall contain "a summary of effluent quality assurance or control measures undertaken in the reporting period."

Effluent control measures include in-house sampling and testing for operational parameters such as suspended solids, soluble phosphorus, and dissolved oxygen. In-house testing provides real time results which are then evaluated to determine if process changes are necessary to enhance operational performance. All inhouse sampling and analysis are performed by certified operations staff utilizing approved methods and protocols for sampling, analysis and recording as specified in the Ministry's Procedure F-10-1, "Procedures for Sampling and Analysis Requirements for Municipal and Private Sewage Treatment Works", the Ministry's publication, "Protocol for the Sampling and Analysis of Industrial/Municipal Wastewater" and the publication, "Standard Methods for the Examination of Water and Wastewater".

All final effluent samples collected during the reporting period to meet ECA sampling requirements were submitted to SGS Lakefield Research Ltd. laboratory for analysis, with the exception of pH, temperature and unionized ammonia. SGS Lakefield Research has been deemed accredited by the Canadian Association for

Laboratory Accreditation (CALA), meeting strict provincial guidelines including an extensive quality assurance/quality control program. By choosing this laboratory, the Ontario Clean Water Agency is ensuring appropriate control measures are undertaken during sample analysis. The pH and temperature parameters were analyzed in the field at the time of sample collection by certified operators, to ensure accuracy and precision of the results obtained. The unionized ammonia was calculated using the total ammonia nitrogen concentration, pH and temperature as required by the facility Environmental Compliance Approval.

Effluent quality assurance is maintained in several ways. Laboratory samples are sent to an accredited laboratory (SGS Canada Inc. - Lakefield) for analysis of all effluent parameters. Sampling calendars issued to the operator which denote frequency of sampling. Calendars are used as a tracking mechanism throughout the month to ensure all required samples are collected. These calendars are submitted to the Process Compliance Technician at the end of each month for review. Raw and effluent samples are collected as per the Amended Environmental Compliance Approval and the results are reviewed on a regular basis to ensure compliance with the site's objectives and limits.

Work orders illustrating all scheduled and preventative maintenance to be completed are issued to the operator and/or mechanic. OCWA conducts internal audits of the facility and develops Action Plans to ensure deficiencies are identified.

ECA No. 8497-8D3TU7Condition 9(4)(e) – Summary of Calibration and Maintenance

ECA No. 8497-8D3TU7 Condition 9(4)(e) states that the annual performance report shall contain "a summary of the calibration and maintenance carried out on all effluent monitoring equipment."

Calibrations on effluent monitoring equipment were performed by Flowmetrix Technical Services Inc. on June 21, 2023 for equipment located at the Brechin/ Lagoon City Wastewater Treatment Plant. Please see Appendix II: Calibration Reports.

Table 7: Brechin/Lagoon City WWTP – Summary of Equipment Calibrations – 2023			
Collection Monitoring Equipment	Date of Completion		
Pump Station #4 Flow Meter	June 21, 2023		
Pump Station #8 Flow Meter	3 Flow Meter June 21, 2023		
Influent Monitoring Equipment	Date of Completion		
Influent Flow Meter	June 21, 2023		
Final Effluent Monitoring Equipment	Date of completion		
Final Effluent Flow Meter	June 21, 2023		
Online pH meter	June 21, 2023		

ECA No. 8497-8D3TU7 Condition 9(4)(f) – Description of Efforts Made

OCWA uses a number of best efforts to achieve the Effluent Objectives. Effluent quality assurance and control measures include in-house sampling and testing for operational parameters such as suspended solids, phosphorus, dissolved oxygen, etc. In-house testing provides real time results which are then used to enhance process and operational performance. OCWA also collects raw sewage and effluent samples as per the ECA and reviews these results on a regular basis to ensure compliance with the ECA objectives and limits.

OCWA uses a computerized maintenance management system which generates work orders to ensure maintenance of equipment is proactively performed. In addition, OCWA provides regular status reports to the Owner which includes operational data, equipment inventory, financial statements, maintenance activities and capital improvement recommendations.

OCWA has developed comprehensive manuals detailing operations, maintenance, instrumentation and emergency procedures. To ensure facilities are operated in compliance with applicable legal requirements, facility staff have access to a network of operational compliance and support experts at the cluster, region and corporate level.

Table 8	3: Efforts Made to Meet the Effluent Objectives of Condition 9
1.	Sampling effluent as per the ECA.
2.	Visual Inspection of the effluent while performing rounds.
3.	Annual calibration of the pH meter.
4.	Annual calibration of the flow meters.
5.	Performing preventative maintenance activities in accordance with work order schedules.
6.	Monitoring treatment processes through regular in-house checks and review of lab results.
7.	Sludge monitoring of primary clarifiers & adjustments to syphon rates based on tank levels to
	reduce solids carryover.
8.	Visual review of microbiological activity of activated sludge to ensure appropriate F/M ratio
	and control filamentous.

The Brechin/Lagoon City WWTP was able to consistently meet the Effluent Objectives throughout 2023.

Carbonaceous Biochemical Oxygen Demand (CBOD5)

ECA No. 8497-8D3TU7sets the CBOD5 monthly average concentration objective at 8.0 mg/L.

Table 9: Monthly CBOD5 Final Effluent Concentration Objective Comparisons

	Average	Concentration	
Monthly	Concentration	Objective Target	Objective
Average	(mg/L)	(mg/L)	Achieved
January	2.0	8.0	Yes
February	2.0	8.0	Yes
March	2.0	8.0	Yes
April	2.0	8.0	Yes
May	2.4	8.0	Yes
June	3.25	8.0	Yes
July	2.8	8.0	Yes
August	3.25	8.0	Yes
September	3.75	8.0	Yes
October	2.0	8.0	Yes
November	2.5	8.0	Yes
December	2.0	8.0	Yes

Total Suspended Solids (TSS)

ECA No. 8497-8D3TU7 sets the TSS monthly average concentration objective at 12.0 mg/L.

Table 10: Monthly TSS Final Effluent Concentration Objective Comparisons

Month	Average Concentration (mg/L)	Concentration Objective Target (mg/L)	Objective Achieved
January	2.8	12.0	Yes
February	2.5	12.0	Yes
March	3.25	12.0	Yes
April	4.5	12.0	Yes
May	4.0	12.0	Yes
June	3.0	12.0	Yes
July	4.4	12.0	Yes
August	4.25	12.0	Yes
September	4.25	12.0	Yes
October	3.2	12.0	Yes
November	3.25	12.0	Yes
December	3.25	12.0	Yes

Total Phosphorus (TP)

ECA No. 8497-8D3TU7 sets the TP monthly average concentration objective at 0.24 mg/L.

Table 11: Monthly TP Final Effluent Concentration Objective Comparisons

Month	Average Concentration (mg/L)	Concentration Objective Target (mg/L)	Objective Achieved
January	0.04	0.24	Yes
February	0.04	0.24	Yes
March	0.05	0.24	Yes
April	0.06	0.24	Yes
May	0.20	0.24	Yes
June	0.05	0.24	Yes
July	0.06	0.24	Yes
August	0.08	0.24	Yes
September	0.11	0.24	Yes
October	0.04	0.24	Yes
November	0.06	0.24	Yes
December	0.11	0.24	Yes

E.Coli

ECA No. 8497-8D3TU7 sets the monthly E. Coli geometric mean objective at 100 cfu/100mL.

Table 12: Monthly E. Coli Final Effluent Concentration Objective Comparisons

Month	Geometric Mean (cfu/100mL)	Concentration Objective Target (cfu/100mL)	Objective Achieved
January	21.1	100	Yes
February	21.4	100	Yes
March	18.9	100	Yes
April	50.4	100	Yes
May	5.7	100	Yes
June	6.8	100	Yes
July	8.6	100	Yes
August	2.0	100	Yes
September	1.3	100	Yes
October	2.0	100	Yes
November	2.8	100	Yes
December	3.1	100	Yes

<u>рН</u>

The pH of the effluent ranged from 6.82–8.19 throughout 2023 which is within the ECA design objectives of 6.50 to 9.00, inclusive, at all times.

Table 13: Monthly pH Final Effluent Concentration Objective Comparisons

Month	Minimum	Maximum
January	6.95	7.17
February	6.86	6.98
March	6.82	7.90
April	7.60	7.70
May	7.49	7.58
June	7.45	7.53
July	7.18	7.49
August	7.49	7.64
September	7.62	7.75
October	7.51	7.83
November	7.72	7.84
December	7.80	8.19

Unionized Ammonia

The concentration of un-ionized ammonia is calculated using the total ammonia nitrogen, along with field pH and temperature using the methodology stipulated in "Ontario's Provincial Water Quality Objectives" dated July 1994, as amended. The following are the results for the calculated unionized ammonia.

Table 14: Weekly Final Effluent pH, Temperature and Calculated Un-ionized Ammonia

Date	Total Ammonia Nitrogen: NH3 + NH4+ as N [mg/L]	Field pH	Field temp 'C	Un-ionized Ammonia
01/04/2023	0.1	7.11	7.11	0.0002
01/11/2023	0.1	7.17	6.3	0.0002
01/16/2023	1.0	7.04	5.1	0.0014
01/23/2023	1.7	6.95	6.5	0.0021
01/30/2023	1.0	6.96	5.1	0.0011
02/08/2023	4.4	6.86	5.7	0.0042
02/14/2023	1.6	6.98	6.9	0.0022
02/21/2023	2.3	6.89	6.3	0.0025
02/27/2023	2.6	6.87	4.6	0.0023
03/07/2023	1.8	6.87	6.3	0.0019
03/13/2023	2.7	6.82	5.9	0.0024
03/20/2023	1.7	6.93	5.7	0.0019
03/27/2023	1.4	7.90	14.8	0.0293
04/05/2023	0.8	7.60	16.3	0.0095
04/11/2023	1.7	7.60	19.3	0.0251
04/17/2023	0.1	7.70	21.5	0.0022
04/24/2023	0.1	7.60	5.6	0.0005
05/03/2023	0.1	7.58	6.3	0.0005
05/08/2023	0.1	7.52	7.7	0.0005
05/15/2023	0.1	7.52	9.2	0.0006
05/23/2023	0.1	7.53	9.6	0.0006
05/29/2023	0.1	7.49	11.3	0.0006
06/07/2023	0.1	7.51	12.1	0.0007
06/12/2023	0.1	7.45	12.1	0.0006
06/19/2023	0.05	7.53	13.0	0.0004
06/26/2023	0.1	7.46	15.7	0.0017
07/06/2023	5.7	7.41	16.9	0.0459
07/11/2023	1.6	7.18	16.0	0.0071
07/17/2023	0.04	7.28	15.5	0.0002
07/24/2023	2.8	7.36	16.2	0.0191
07/31/2023	1.8	7.49	15.9	0.0161
08/08/2023	6.4	7.49	16.6	0.0605
08/14/2023	6.8	7.54	15.4	0.0659
08/21/2023	6.1	7.60	16.0	0.0708
08/28/2023	6.3	7.65	15.3	0.0778
09/05/2023	10.3	7.62	17.4	0.1388
09/11/2023	6.6	7.70	16.4	0.0991
09/18/2023	4.9	7.75	14.5	0.0715
09/25/2023	2.8	7.73	14.5	0.0391
10/03/2023	2.6	7.51	8.0	0.0133

10/10/2023 6.2 7.61 11.7 0.0532 10/17/2023 0.3 7.64 11.5 0.0027 10/23/2023 2.8 7.83 9.7 0.0340 10/30/2023 2.9 7.74 10.2 0.0298	-
10/23/2023 2.8 7.83 9.7 0.0340	
	,
10/30/2023 2.9 7.74 10.2 0.0298)
	3
11/06/2023 2.9 7.72 8.8 0.0256	j
11/14/2023 2.4 7.72 7.6 0.0192) -
11/20/2023 3.0 7.82 6.5 0.0277	,
11/27/2023 3.5 7.84 6.0 0.0325	,
12/07/2023 2.7 7.86 5.6 0.0254	
12/11/2023 1.9 7.80 6.7 0.0170)
12/18/2023 1.5 7.88 6.0 0.0153	}
12/27/2023 0.0 8.19 6.7 0.0022	

Temperature

The final effluent temperature ranged from 4.6°C to 21.5°C.

Additional Parameters

The parameters listed below are collected as per ECA or regulatory requirements or for process optimization.

Influent Samples

Influent sampling is completed in order to make the necessary process adjustments to stay within the Final Effluent Objectives and limits set in the ECA.

Table 15: Monthly Influent Sample Result Concentration Averages

	Biochemical	Total	Total	Total
	Oxygen	Suspended	Kjeldahl	Phosphorus –
	Demand -	Solids – TSS	Nitrogen –	TP
Month	BOD5 (mg/L)	(mg/L)	TKN (mg/L)	(mg/L)
January	14.0	88.0	5.3	0.41
February	83.0	92.0	18.6	1.79
March	121.0	162.0	17.1	1.85
April	20.0	19.0	7.6	0.58
May	30.0	276.0	7.0	0.89
June	45.0	70.0	15.9	1.55
July	26.0	48.0	11.8	0.96
August	165.0	181.0	20.2	2.29
September	139.0	122.0	24.6	2.79
October	206.0	207.0	31.4	3.67
November	122.0	127.0	19.3	1.89
December	92.0	97.0	18.4	2.31

The total volume of sludge generated in 2023 was 1035 m³ which was slightly lower than the amount of sludge generated in 2022. Wessuc Inc. has been contracted to haul, land apply the Biosolids on their approved sites. Monthly sludge sampled are collected & tested for metals listed in the Ontario Guidelines for Sewage Biosolids Utilization on Agricultural Lands. There is enough storage to store sludge at the Brechin/ Lagoon City WWTP for the rest of the year.

Table 16: Monthly Sludge Generation Volumes

Month	Volume (m³)
January	0
February	0
March	0
April	0
May	495
June	0
July	0
August	0
September	0
October	540
November	0
December	0
Total	1035

The anticipated volume of biosolids for the next reporting period is not expected to be significantly different from this reporting period. There are no expected changes in the current sludge handling methods that are currently utilized. Refer to Appendix III: Biosolids Summary

ECA #8497-8D3TU7 Condition 9(5)(h) - Community Complaints

During the 2023 reporting period there was no community complaints received.

ECA #8497-8D3TU7 Condition 9(5)(i) - Summary of all Bypass, Spill or Abnormal Discharge Events

During the 2023 reporting period there was no Bypasses, spills and abnormal discharge events.

ECA #8497-8D3TU7 Condition 9(5)(j) – Status Update of the Initial Effluent Characterization as per Condition 8 subsection (1) until it has been completed and the required report has been submitted.

The initial effluent characterization was submitted as per Condition 8 Section (1). No updates occurred during the reporting period.

ECA #8497-8D3TU7 Condition 9(5)(k)- any other information the *District Manager* requires from time to time.

The District Manager has not requested any additional information be included in this report.

ECA #147-W601 Condition 4.6.9 – Summary of Efforts Made to Reduce Overflows, Spills and Bypasses.

a) A description of projects undertaken and completed in the Authorized System that result in overall overflow reduction or elimination including expenditures and proposed projects to eliminate overflows with estimated budget forecast for the year following that for which the report is submitted.

• Approved budget to begin I&I investigations in 2024.

b) Details of the establishment and maintenance of a PPCP, including a summary of project progresses compared to the PPCP's timelines.

The Ramara Sanitary Sewage Collection system does not contain combined sewers and therefore is not required to complete a Pollution Prevention and Control Plan (PPCP).

- c) An assessment of the effectiveness of each action taken. Nothing to report at this time.
- d) An assessment of the ability to meet Procedure F-5-1 or Procedure F-5-5 objectives (as applicable) and if able to meet the objectives, an overview of next steps and estimated timelines to meet the objectives.

 Not applicable.
- e) Public reporting approach including proactive efforts.

The Township of Ramara utilizes their website and social media platforms to post Media Releases. Residents have the ability to subscribe to receive Media Releases from the Township of Ramara to an email address. They Township of Ramara also distributes a quarterly publication as well as randomized campaigns that bring awareness to the Sewer Use Bylaw and other information related to municipal sewer use such as sump pump connections.

Appendix I

Performance Assessment Report

01/31/2024

From 1/1/2023 to 12/31/2023

From the Face of America From the Face of A	1617 LAGOON CITY WASTEWATER TREATMEN	IT PLANT 1200	002255														
March Server Marc		1 / 2023	2/ 2023	3/ 2023	4/ 2023	5/ 2023	6/ 2023	7/ 2023	8/ 2023	9/ 2023	10/ 2023	11/ 2023	12/ 2023	<total></total>	<avg></avg>	<max></max>	<-Criteria->
Marthun Age	Flows																
Martin M	Raw Flow: Total - Raw m³/d	57,773.60	37,457.10	46,859.40	55,431.10	49,529.00	39,370.00	39,518.30	36,649.20	25,159.50	26,574.70	27,248.80	51,659.60	493,230.30			0.00
Part	Raw Flow: Avg - Raw m³/d	1,863.66	1,337.75	1,511.59	1,847.70	1,597.71	1,312.33	1,274.78	1,182.23	838.65	857.25	908.29	1,666.44	1	1,351.32		2,273.00
Processor Proc	Raw Flow: Max - Raw m³/d	4,687.40	2,026.30	2,479.50	3,802.40	2,197.60	2,642.80	1,770.70	1,642.20	1,157.40	1,261.30	1,238.70	3,722.40	1	 	4,687.40	0.00
Processor Proc	Raw Flow: Count - Raw m³/d	31.00	28.00	31.00	30.00	31.00	30.00	31.00	31.00	30.00	31.00	30.00	31.00	365.00	 		0.00
Property	Eff. Flow: Total - Final Effluent m³/d	59,285.28	37,127.87	46,191.42	54,499.17	47,906.93	37,712.24	39,448.85	37,170.80	26,221.96	27,192.52	27,324.25	52,349.15	492,430.44	 		0.00
Continue for the following Parameter Continue from the following Parameter Continue from the following Parameter Continue from the following following from the fol	Eff. Flow: Avg - Final Effluent m³/d	1,912.43	1,326.00	1,490.05	1,816.64	1,545.38	1,257.07	1,272.54	1,199.06	874.07	877.18	910.81	1,688.68		1,349.12		2,273.00
Property	Eff. Flow: Max - Final Effluent m³/d	4,432.20	2,397.77	2,782.35	3,512.74	2,479.08	2,571.48	1,786.82	1,646.64	1,368.27	1,413.41	1,323.05	3,504.72		1	4,432.20	0.00
Process Proc	Eff Flow: Count - Final Effluent m³/d	31.00	28.00	31.00	30.00	31.00	30.00	31.00	31.00	30.00	31.00	30.00	31.00	365.00	† †		0.00
## Company of a 2000 - Find Ethnox 100 140	Carbonaceous Biochemical Oxygen Demand: CBOD	11	JL	L	J		<u> </u>		11-11			<u> </u>		L		l l	
Section Control of Minural Section Control of Minural Control	Eff: Avg cBOD5 - Final Effluent mg/L	2.00 <	2.00 <	2.00 <	2.00 <	2.40 <	3.25 <	2.80 <	3.25 <	3.75 <	2.00 <	2.50 <	2.00		< 2.48 <	3.75	10.00
Name of Description Property Description	Eff: # of samples of cBOD5 - Final Effluent	5.00	4.00	4.00	4.00	5.00	4.00	5.00	4.00	4.00	5.00	4.00	4.00	52.00	1		0.00
Mar. Agr. Mar. Ma	Loading: cBOD5 - Final Effluent kg/d <	3.825 <	2.652 <	2.980 <	3.633 <	3.709 <	4.085 <	3.563 <	3.897 <	3.278 <	1.754 <	2.277 <	3.377		3.35	4.09	
Part of Startford of COSS - Raw 1.00 1.0	Biochemical Oxygen Demand: BOD5	11	JL	L	J		<u> </u>		11-11			<u> </u>		L		l l	
Particul Remort B.000 - Rem Vs. Total Surpressed Soliders: 158 Raw of a family and the standard B.000 - Rem Vs. Raw of a family and the standar	Raw: Avg BOD5 - Raw mg/L	14.00	83.00	121.00	20.00	30.00	45.00	26.00	165.00	139.00	206.00	122.00	92.00		88.58	206.00	0.00
Total Suspended Solids: TSS Raw Ang Section Secti	Raw: # of samples of BOD5 - Raw	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	12.00	† †		0.00
Raw r d profess - Remnys 86.0 96.0 162.0 162.0 155.0 155.0 175.0 150.0 161.0 162.0 162.0 167.0 177.0 177.0 177.0 174.0	Percent Removal: BOD5 - Raw %	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00		0.00
Rear of sample of TSS - Paul Elliwart rigid. 100	Total Suspended Solids: TSS][][]][][_][<u> </u>				<u> </u>
Eft. Ag TSS. Final Effluent mpL Eft. ag TSS. Ent. ag TSS. Ent. ag TSS. ag TS	Raw: Avg TSS - Raw mg/L	88.00	92.00	162.00	19.00	276.00	70.00	48.00	181.00	122.00	207.00	127.00	97.00		124.08	276.00	0.00
Eff. of Samples of TSS - Fred Effluent (pd 4.00 4.00 4.00 4.00 4.00 5.00 4.00 4.00 5.00 4.00 4.00 5.00 4.00 5.00 4.00 5.00 4.00 5.00	Raw: # of samples of TSS - Raw	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	12.00	1		0.00
Loding: TSS - Final Effluent legid	Eff: Avg TSS - Final Effluent mg/L <	2.80 <	2.50	3.25	4.50	4.00 <	3.00	4.40	4.25 <	4.25 <	3.20	3.25	3.25		< 3.56 <	4.50	15.00
Process Removal: TSS - Raw % 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Eff: # of samples of TSS - Final Effluent	5.00	4.00	4.00	4.00	5.00	4.00	5.00	4.00	4.00	5.00	4.00	4.00	52.00	1		0.00
Total Phosphorus: TP Rew. Agr TP - Rew TP - Rew	Loading: TSS - Final Effluent kg/d <	5.355 <	3.315	4.843	8.175	6.182 <	3.771	5.599	5.096 <	3.715 <	2.807	2.960	5.488		4.80	8.17	
Raw: Ag TP - Raw mgL Raw: Ag TRN - Raw mgL Raw:	Percent Removal: TSS - Raw %	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00		0.00
Raw, # of samples of TP - Raw 1.00	Total Phosphorus: TP	111	JL	!!\-	JL		11				.	III		II.	11		
Eff. Ary TP - Final Effluent mg/L Eff. ary NO2-N - Final Effluent mg/L E	Raw: Avg TP - Raw mg/L	0.41	1.79	1.85	0.58	0.89	1.55	0.96	2.29	2.79	3.67	1.89	2.31		1.75	3.67	0.00
Eff. # of samples of TP - Final Effluent kg/d	Raw: # of samples of TP - Raw	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	12.00	†		0.00
Loading: TP - Final Effluent kg/d	Eff: Avg TP - Final Effluent mg/L	0.04 <	0.04	0.05	0.06	0.06	0.04 <	0.06	0.08	0.11 <	0.04	0.06	0.05		< 0.06 <	0.11	0.30
Percent Removal: TP - Raw % 0.00	Eff: # of samples of TP - Final Effluent	5.00	4.00	4.00	4.00	5.00	4.00	5.00	4.00	4.00	5.00	4.00	4.00	52.00	† †		0.00
New: Ang TKN - Raw mgL Raw: Ang TKN - Raw mgL	Loading: TP - Final Effluent kg/d <	0.069 <	0.050	0.075	0.100	0.090	0.053 <	0.081	0.096	0.096 <	0.039	0.050	0.076		< 0.08 <	0.10	249.000
Raw: #g TKN - Raw mg/L	Percent Removal: TP - Raw %	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00		0.00
Raw: # of samples of TKN - Raw 1.00	Nitrogen Series			·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		AI		11-41		.,	.			, ,,		
Eff: Arg TAN - Final Effluent mg/L	Raw: Avg TKN - Raw mg/L	5.30	18.60	17.10	7.60	7.00	15.90	11.80	20.20	24.60	31.40	19.30	18.40		16.43	31.40	0.00
Eff. # of samples of TAN - Final Effluent kg/d	Raw: # of samples of TKN - Raw	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	12.00	i i		0.0
Loading: TAN - Final Effluent kg/d < 1.492 3.613 2.831 < 1.226 < 0.155 < 0.566 3.130 7.674 5.376 2.596 2.687 < 2.617 < 3.18 < 7.67 Eff. Avg NO3-N - Final Effluent mg/L 7.95 7.22 7.43 7.96 11.16 15.53 7.40 10.54 13.28 10.33 10.47 9.52 9.90 15.53 Eff. avg NO2-N - Final Effluent mg/L 5.00 4.00 4.00 4.00 5.00 4.00 5.00 4.00 5.00 4.00 5.00 4.00 5.00 4.00 5.00 4.00 5.00 4.00 5.00 6.00 0.23 0.50 0.33 0.50 5.00 6.00 Eff. avg NO2-N - Final Effluent mg/L 5.00 4.00 4.00 5.00 4.00 5.00 4.00 5.00 4.00 5.00 4.00 5.00 6.00 0.23 0.50 6.00 Disinfection Eff. GMD E. Coi - Final Effluent ct/d100mL 19.97 21.38 18.94 50.42 5.33 6.82 5.59 2.00 1.41 2.00 2.83 3.13	Eff: Avg TAN - Final Effluent mg/L	0.78	2.73	1.90 <	0.68 <	0.10 <	0.45	2.46	6.40	6.15	2.96	2.95 <	1.55		< 2.36 <	6.40	
Eff. Arg NO3-N - Final Effluent mg/L Fif. 4rg NO3-N - Final Effluent mg/L Fif. 4rg NO3-N - Final Effluent mg/L Fif. 4rg NO2-N - Final Effluent	Eff: # of samples of TAN - Final Effluent	5.00	4.00	4.00	4.00	5.00	4.00	5.00	4.00	4.00	5.00	4.00	4.00	52.00	i i		0.0
Eff: e of samples of NO3-N - Final Effluent	Loading: TAN - Final Effluent kg/d <	1.492	3.613	2.831 <	1.226 <	0.155 <	0.566	3.130	7.674	5.376	2.596	2.687 <	2.617		3.18	7.67	
Eff: Avg NO2-N - Final Effluent my/L Eff: # of samples of NO2-N - Final Effluent my/L Eff: # of samples of NO2-N - Final Effluent du/100mL Eff: # of samples of NO2-N - Final Effluent du/100mL Eff: GMD E. Coli - Final Effluent du/100mL Distriction Eff: GMD E. Coli - Final Effluent du/100mL	Eff: Avg NO3-N - Final Effluent mg/L	7.95	7.22	7.43	7.96	11.16	15.53	7.40	10.54	13.28	10.33	10.47	9.52		9.90	15.53	0.0
Eff: # of samples of NO2-N - Final Effluent Distribution	Eff: # of samples of NO3-N - Final Effluent	5.00	4.00	4.00	4.00	5.00	4.00	5.00	4.00	4.00	5.00	4.00	4.00	52.00			0.0
Disinfection Eff: GMD E. Coli - Final Effluent cfu/100mL 19.97 21.38 18.94 50.42 5.33 6.82 5.59 2.00 1.41 2.00 2.83 3.13	Eff: Avg NO2-N - Final Effluent mg/L	0.08	0.15	0.25	0.25	0.11 <	0.30	0.30	0.60	0.23	0.50	0.33	0.50		0.30	0.60	0.0
Eff: GMD E. Coli - Final Effluent cfu/100mL 19.97 21.38 18.94 50.42 5.33 6.82 5.59 2.00 1.41 2.00 2.83 3.13	Eff: # of samples of NO2-N - Final Effluent	5.00	4.00	4.00	4.00	5.00	4.00	5.00	4.00	4.00	5.00	4.00	4.00	52.00			0.0
	Disinfection	U	ILI				as 11 AL	11-1		4		,					
	Eff: GMD E. Coli - Final Effluent cfu/100mL	19.97	21.38	18.94	50.42	5.33	6.82	5.59	2.00	1.41	2.00	2.83	3.13				200.00
Ett: # of samples of E. Coil - Final Ettluent 5.00 4.00 4.00 5.00 4.00 5.00 4.00 5.00 4.00 5.00 4.00 5.00	Eff: # of samples of E. Coli - Final Effluent	5.00	4.00	4.00	4.00	5.00	4.00	5.00	4.00	4.00	5.00	4.00	4.00	52.00	† †		0.00

Page 1 of 1

Appendix II

Calibration Reports

AS FOUND CERTIFICATION FORWARD FLOW DIRECTION

PASS

CLIENT DETA	AIL					EQI	UIPMENT DE	ETAIL
CUSTOMER	OCWA - Kav	vartha Lakes Hub		[MUT]	MANUFACTURE	R	Roser	nount
CONTACT	Nick Leroux			MODE	L			8712
	Senior Opera	tions Manager			ERTER SERIAL I	NUMBER	0806024	15142
	123 East St S							
	Bobcaygeon (ON, KOM 1A0						
	P: 705-623-72			PLAN'	TID		Lagoon City	STP
	E nleroux@o			METE	RID		Final Effluent	,
				FIT ID				NA
				CLIEN	IT TAG			NΑ
				OTHE	R			NΑ
VER. BY - FM	Art Pencilo			GPS (COORDINATES	N 44°33.	467 W 079°1	2.436
Quality Mana	agement Stand	lards Information	end to	VERIE	ICATION DATE		June 21st	2023
conduct this	verification tes	t is found in our	AC-		REQUENCY			nnual
QMS docume	ent at the time				OUE DATE		- '	2024
conducted.							50110	
	ING PARAMETE		300	AS FO		RD TOTALIZE	R INFORMA 1837919	TION M3
DIAMETER (D	•	mm LPS		AS FC	*··-		82.26	M3
F.S. FLOW - N	-	LPS	859,000		RENCE	44	837836.74	M3
F.S. RANGE -			600,000	DIFFE	KENCE	-10	TEST CRIT	
		11	08905010807005				IESI CKII	Yes
TUBE CAL. FA	AOTOR			AC CC				
TUBE CAL, FA	AOTOR				UND CERTIFICA			
TUBE CAL. FA	AOTOR			FORM	ARD FLOW DIR	ECTION		Yes
TUBE CAL. FA	AO TOIX			FORM		ECTION DR	OMENTS TE	Yes 5
TUBE CAL, FA	AOTOK			FORM ALLO	/ARD FLOW DIRI WABLE [%] ERRO	ECTION OR COMPO	ONENTS TES	Yes 5 STED
TUBE CAL. FA	NOTOK			FORW ALLON CONV	/ARD FLOW DIRI NABLE [%] ERRO ERTER DISPLAY	ECTION OR COMPO	ONENTS TES	Yes 5 STED yes
TUBE CAL, FA	NOTON.			FORM ALLON CONV MA OI	VARD FLOW DIRI WABLE [%] ERRO ERTER DISPLAY JTPUT	ECTION OR COMPO	ONENTS TES	Yes 5 STED yes yes
TUBE CAL. FA				FORW ALLOW CONV MA OU TOTAL	VARD FLOW DIRI MABLE [%] ERRO ERTER DISPLAY JTPUT LIZER	ECTION DR COMPO	ONENTS TE	Yes 5 STED yes yes yes
			2004504000000	FORM ALLON CONV MA OI TOTAL ACCU	JARD FLOW DIRI MABLE [%] ERRO ERTER DISPLAY JTPUT LIZER RACY BASED ON	ECTION DR COMPO		Yes 5 STED yes yes yes yes
VERIFICATOR	R CAL. FACTOR		00015010000000	FORM ALLON CONV MA OI TOTAL ACCU	VARD FLOW DIRI MABLE [%] ERRO ERTER DISPLAY JTPUT LIZER	ECTION DR COMPO		Yes 5 STED yes yes yes yes
VERIFICATOR [16-digits]	R CAL. FACTOR		00015010000000	FORM ALLON CONV MA OI TOTAL ACCU	JARD FLOW DIRI MABLE [%] ERRO ERTER DISPLAY JTPUT LIZER RACY BASED ON	ECTION DR COMPO		Yes 5 STED yes yes yes yes
VERIFICATOR [16-digits] FLOW TUBE S	R CAL. FACTOR		0	FORM ALLON CONV MA OI TOTAL ACCU ERRO	VARD FLOW DIRI WABLE [%] ERRO TERTER DISPLAY DIPUT LIZER RACY BASED ON R DOCUMENTED I	ECTION DR COMPO	; BASED ON '	Yes 5 STED yes yes yes yes
VERIFICATOR [16-digits] FLOW TUBE S DISPLAY	R CAL. FACTOR		0.00	FORW ALLOW CONV MA OI TOTAL ACCU ERRO	VARD FLOW DIRI WABLE [%] ERRO VERTER DISPLAY JTPUT LIZER RACY BASED ON R DOCUMENTED I	COMPO	ft/s	Yes 5 STED yes yes yes yes
VERIFICATOR [16-digits] FLOW TUBE S DISPLAY MUT Reading	R CAL. FACTOR		0,00	CONV MA OI TOTAL ACCU ERRO 3 3,00 3,00	VARD FLOW DIRI	COMPO	ft/s ft/s ft/s	Yes 5 STED yes yes yes yes
VERIFICATOR [16-digits] FLOW TUBE S DISPLAY MUT Reading MUT % Error	R CAL. FACTOR		0 0,00 0,00 n/a	GONV MA OI TOTAL ACCU ERRO 3 3,00 3,00 0,00	ARD FLOW DIRI WABLE [%] ERRO ERTER DISPLAY JTPUT LIZER RACY BASED ON R DOCUMENTED I 10 10,00 10,00 0,00	COMPO N [% o.r.] N THIS REPORT 30 30,00 30,00 0,00	ft/s ft/s ft/s ft/s	Yes 5 STED yes yes yes yes
VERIFICATOR [16-digits] FLOW TUBE S DISPLAY MUT Reading MUT % Error mA OUTPUT	R CAL. FACTOR	10	0 0.00 0.00 n/a 4.000	3 3,00 0,00 5,600	JARD FLOW DIRI	COMPO N [% o.r.] N THIS REPORT 30 30.00 30.00 0.00 20.000	ft/s ft/s ft/s ft/s mA	Yes 5 STED yes yes yes yes
VERIFICATOR [16-digits] FLOW TUBE S DISPLAY MUT Reading MUT % Error mA OUTPUT MUT Reading	R CAL. FACTOR	4 mA	0 0.00 0.00 n/a 4.000 3.999	3 3.00 0.00 5.600	ARD FLOW DIRI WABLE [%] ERRO ERTER DISPLAY JTPUT LIZER RACY BASED ON R DOCUMENTED I 10 10.00 10.00 0.00 9.333 9.940	COMPO N [% o.r.] N THIS REPORT 30 30.00 30.00 0.00 20.000 20.025	ft/s ft/s ft/s ft/s mA	Yes 5 STED yes yes yes yes
VERIFICATOR [16-digits] FLOW TUBE S DISPLAY MUT Reading MUT % Error mA OUTPUT MUT Reading MUT Reading	R CAL. FACTOR	10	0 0.00 0.00 n/a 4.000	3 3,00 0,00 5,600	JARD FLOW DIRI	COMPO N [% o.r.] N THIS REPORT 30 30.00 30.00 0.00 20.000 20.025 0.12	ft/s ft/s ft/s ft/s mA mA %	Yes 5 STED yes yes yes yes
VERIFICATOR [16-digits] FLOW TUBE S DISPLAY MUT Reading MUT % Error mA OUTPUT MUT Reading MUT % Error TOTALIZER	R CAL. FACTOR	4 mA	0 0.00 0.00 n/a 4.000 3.999	3 3.00 0.00 5.600 5.781	ARD FLOW DIRI WABLE [%] ERRO ERTER DISPLAY JTPUT LIZER RACY BASED ON R DOCUMENTED I 10 10.00 10.00 0.00 9.333 9.940	COMPO N [% o.r.] N THIS REPORT 30 30.00 30.00 0.00 20.000 20.025 0.12 30.00	ft/s ft/s ft/s ft/s mA mA % ft/s	Yes 5 STED yes yes yes yes
VERIFICATOR [16-digits] FLOW TUBE S DISPLAY MUT Reading MUT % Error mA OUTPUT MUT Reading MUT % Error TOTALIZER TEST Accumut	R CAL. FACTOR	4 mA	0 0,00 0,00 n/a 4,000 3,999 -0,02	3 3,00 3,00 0,00 5,600 5,781 3,23	JARD FLOW DIRI	COMPO N [% o.r.] N THIS REPORT 30 30.00 30.00 0.00 20.005 0.12 30.00 2000.00	ft/s ft/s ft/s ft/s ft/s ft/s ft/s ft/s	Yes 55 STED yes yes yes yes yes
VERIFICATOR [16-digits] FLOW TUBE S DISPLAY MUT Reading MUT % Error MA OUTPUT MUT Reading MUT % Error TOTALIZER TEST Accumul	R CAL. FACTOR SIMULATION	4 mA	0 0,00 0,00 n/a 4,000 3,999 -0,02	3 3.00 3.00 5.600 5.781 3.23	JARD FLOW DIRI	COMPO N [% o.r.] N THIS REPORT 30 30.00 30.00 0.00 20.000 20.025 0.12 30.00 2000.00 66.63	ft/s ft/s ft/s ft/s ft/s ft/s ft/s ft/s	Yes 55 STED yes yes yes yes yes
VERIFICATOR [16-digits] FLOW TUBE S DISPLAY MUT Reading MUT % Error MA OUTPUT MUT Reading MUT % Error TOTALIZER TEST Accumul	R CAL. FACTOR SIMULATION	4 mA	0 0,00 0,00 n/a 4,000 3,999 -0,02 QUALITY MAN. [QMS] INFORM	3 3.00 3.00 0.00 5.600 5.781 3.23	JARD FLOW DIRI WABLE [%] ERRO ERTER DISPLAY JTPUT LIZER RACY BASED ON R DOCUMENTED I 10 10.00 10.00 0.00 9.333 9.940 6.50 DS INFO. ID#	COMPO N [% o.r.] N THIS REPORT 30 30.00 30.00 0.00 20.025 0.12 30.00 2000.00 66.63 30.02	ft/s ft/s ft/s ft/s ft/s ft/s ft/s ft/s	Yes 55 STED yes yes yes yes yes
VERIFICATOR [16-digits] FLOW TUBE S DISPLAY MUT Reading MUT % Error MA OUTPUT MUT Reading MUT % Error TOTALIZER TEST Accumul TIME CALC. Velocity	R CAL. FACTOR SIMULATION	4 mA	0 0,00 0,00 n/a 4,000 3,999 -0,02	3 3,00 3,00 0,00 5,600 5,781 3,23 AGEMENT STANDARG	JARD FLOW DIRI WABLE [%] ERRO ERTER DISPLAY JTPUT LIZER RACY BASED ON R DOCUMENTED I 10 10.00 10.00 0.00 9.333 9.940 6.50 DS INFO. ID#	COMPO N [% o.r.] N THIS REPORT 30 30.00 30.00 0.00 20.000 20.025 0.12 30.00 2000.00 66.63	ft/s ft/s ft/s ft/s ft/s ft/s ft/s ft/s	Yes 5 5 yes yes yes yes.
VERIFICATOR [16-digits] FLOW TUBE S DISPLAY MUT Reading MUT % Error MA OUTPUT MUT Reading MUT % Error TOTALIZER TEST Accumul TIME CALC. Velocity	R CAL. FACTOR SIMULATION	4 mA	0 0,00 0,00 n/a 4,000 3,999 -0,02 QUALITY MAN. [QMS] INFORM	GONV MA OUTOTAL ACCU ERRO 3.00 3.00 0.00 5.600 5.781 3.23 AGEMENT STANDARD ATION IDENT. TTS ROS ER PM	JARD FLOW DIRI WABLE [%] ERRO ERTER DISPLAY JTPUT LIZER RACY BASED ON R DOCUMENTED I 10 10.00 10.00 0.00 9.333 9.940 6.50 DS INFO. ID#	COMPO N [% o.r.] N THIS REPORT 30 30.00 30.00 0.00 20.025 0.12 30.00 2000.00 66.63 30.02	ft/s ft/s ft/s ft/s ft/s ft/s ft/s ft/s	Yes 55 STED yes yes yes yes yes
	R CAL. FACTOR SIMULATION	4 mA	0 0,00 0,00 n/a 4,000 3,999 -0,02 QUALITY MAN. [QMS] INFORM/ [REFERENCE] I	3 3,00 3,00 0,00 5,600 5,781 3,23 AGEMENT STANDARG ATION IDENT. TTS ROS ER PM	JARD FLOW DIRI WABLE [%] ERRO ERTER DISPLAY JTPUT LIZER RACY BASED ON R DOCUMENTED I 10 10.00 10.00 0.00 9.333 9.940 6.50 DS INFO. ID#	COMPO N [% o.r.] N THIS REPORT 30 30.00 30.00 0.00 20.025 0.12 30.00 2000.00 66.63 30.02	ft/s ft/s ft/s ft/s ft/s ft/s ft/s ft/s	Yes 5 STED yes yes yes yes yes

	CAL	101000	are ic	n na	1 Out	e valu	55.

COMMENTS	RES	ULTS	
Totalizer reset after verification.	TEST	AVG	PASS
	1691	% о.г.	FAIL
	DISPLAY	0.00	PASS
	mA OUTPUT	3,29	PASS
	TOTALIZER	0.06	PASS
	ļ	100	

This report reflects the test results of the overall accuracy for the above flow converter using the specified manufacturers flow tube simulator to within the specified tolerance as identified within this report.

AS FOUND CERTIFICATION

PASS

OUGHONEIN	•				EQUIPMENT DE	TAIL
CONTACT	OCWA - Kawartha La	kes Hub		(MUT) MANUFACTURER	Gre	eyline
	Nick Leroux			MODEL	00	CF-IV
5	Senior Operations Ma	nager		CONVERTER SERIAL NU	JMBER 1	7849
1	123 East St S					
F	Bobcaygeon ON_K0M	1A0				
F	P-705-623-7278			PLANT ID	Lagoo	n City
F	E: nleroux@ocwa.con	1		METER ID	Influent	Flow
				FIT ID		NA
				CLIENT TAG		NA
				OTHER		NA
VER. BY - FM	Art Pencilo			GPS COORDINATES	N 44°33 467 W 079°1	2.436
equipment and	ement Standards In instrumentation us	ed to conduct t	his	VERIFICATION DATE CAL. FREQUENCY	June 21st	2023 nnual
time this test w	t is found in our AC- as conducted.	QMS docume	nt at the	CAL, DUE DATE		2024
PROGRAMMING	G PARAMETERS		 		TOTAL	IZER
NOTCH ANGLE		inches	45	AS FOUND	125280	МЗ
EMPTY DISTANC	CE, TX to notch	m	0.662	AS LEFT	125280	МЗ
TRANSDUCER ((TX), to sump flo	m	0.78	DIFFERENCE	0	M3
SUMP LEVEL, ze	ero flow	m	0.118		TEST CRIT	ERIA
				AS FOUND CERTIFICAT	ON TEST	Yes
MAX. HEAD		m	0.300	ALLOWABLE [%] ERROR	1	15
BLANKING DIST	ANCE	m	0.362			
DEAD ZONE		m	0.000		COMPONENTS TES	STED
MAX. FLOW		M3/H	101.4	CONVERTER DISPLAY		yes
	/P	M3/H	101.4	mA OUTPUT		yes
F.S. RANGE - O/				TOTALIZER		no
F.S. RANGE - O/				40011B4011B40EB 011	0/ 1	
F.S. RANGE - 0/				ACCURACY BASED ON	% O.F.J	yes

AS FOUND TEST RE			Γ	0.0	3.1	17.7	48.7	100.0	% F.S. Range
			ľ	0.000	0.075	0.150	0.225	0.300	m
REF. FLOW RATE		_		0.0	3.2	17.9	49.4	101.4	M3/H
MUT [Reading]				0.4	3:1:	17,8	49.0	100.5	M3/H
MUT [Difference]				0.4	0.0	-0.2	-0.4	-0.9	M3/H
MUT [% Error]				0.0	-0.9	-0.9	-0.9	-0.9	%
mA OUTPUT				4.000	4.500	6.828	11.794	20.000	mA
MUT [Reading]	min.	4.000	mΑ	4.000	4.503	6.836	11.811	20.025	mA
MUT [Difference]	max.	20.000	mA	0.000	0.003	0.008	0.017	0.025	mA
MUT [% Error]				0.00	0.07	0.11	0,14	0.12	%
TOTALIZER - REF. F	LOW RA	ΓE		_	•				
TOTALIZER [MUT]									
TEST TIME									
CALC TOTALIZER									

OMMENTS	QUALITY MANAGEME	ENT STANDARD	S INFO.	RES	ULTS	
Results based on Internal Simulation not actual flow.	[QMS] INFORMATION	IDENT.	ID#	TEST	AVG	PASS
	(REFERENCE) LEVEL	Sim. BOARD	n/a	1531	% о.г.	FAIL
	PROCESS METER	PM	2	DISPLAY	-0.87	PASS
	STOP WATCH	SW	n/a	mA OUTPUT	0.09	PASS
				TOTALIZER	N/A	N/A

This report reflects the test results of the overall accuracy for the above flow converter using the specified manufacturers flow tube simulator to within the specified tolerance as identified within this report.

ERROR

ABB MEASUREMENT & ANALYTICS | TEST REPORT

ABB Ability™

Verification for measurement devices

Verification Report for:

WaterMaster

Measurement made easy

Measurement & Analytics Service

Installation Details

Meter Owner	Brechin Lagoon City
Machine Name	PS4
Medium	

Operator Details

Date and Time	21-06-2023 14:43:24
Operator's Name	Admin
Operator's Signature	

Customer Details

Site Address	Lagoon City WWTP
Telephone	
Email	

Overall Status - Passed

Sensor Information	
Sensor Serial No.	5022909
Sensor SAP/ERP No.	3K220000196136
Sensor Type	WM Full Bore
Sensor Size	DN 200
Q3	1000.000 m³/hr
Calibration Accuracy	OIML Class 2
Sensor Calibration Factors	113.841 %, -0.550 mm/s
Date of Manufacture	07:50:17 05/12/2013
Run Hours	67530hrs 35mins
Sensor User Span/Zero	-100.000 %; 0.000 mm/s
User Flow Cutoff/Hysteresis	0.000 %; 20.000 %
Coil Current	180.000 mA
Coil Inductance	99.756 mH
Coil / Loop Resistance	32.430 Ohm

Transmitter Informat	ion
Transmitter Serial No	9023016
Transmitter SAP/ERP No.	3K220000382532
Application Version	V01.06.00 03/03/15
MSP Version	01.00.00
Date of Manufacture	12:54:55 17/10/2016
Run Hours	85580hrs 29mins
Tx Gain Adjustment	0.081 %
OIML Accuracy Alarms	OFF
Mains Freq	50.000 Hz
Qmax	1000.000 m³/hr
Pulses/Unit	50.000
FS Freq	5000.000 Hz
Pulses Limit Freq	100.000 Hz
Meter Mode	Forward Only

	of the Sensor
Summary of Results	
Coil Group	PASS
Electrode Group	PASS
Sensor Group	PASS
Transmitter Signal	PASS
Transmitter Driver	PASS
Configuration	PASS
Sensor Data	- Contract Contract
Coil Inductance Shift	-0.298 %
Cable Length	0 m
Electrode Backoff Voltage	-0.941 V
Electrode Differential Voltage	0.161 V
Pipe Status	Full Pipe

Output Gro	up	
Current Out	tput 31/32	PASS
Applied	Measured	Result
4 mA	3.992 mA	PASS
12 mA	11.972 mA	PASS
20 mA	19.983 mA	PASS
Pulse Outpu	ut 41/42	NOT EXECUTED
Applied	Measured	Result
5250 Hz		
2625 Hz		
Pulse Outpu	ıt 51/52	NOT EXECUTED
Applied	Measured	Result
5250 Hz		
2625 Hz		7 3-10-7

otalizer 1	Information		
	Start	End	Difference
Forward	2800889.937 m³	2800889.961 m³	0.023 m³
Reverse	416.848 m³	416.848 m³	0.000 m ³
Net	2884134.426 m³	2884134.446 m³	0.020 m³

Comments (Installation, Grounding etc.)

Verified current using DMM-22

Verification Certificate has been generated by ABB Ability[™] Verification for measurement devices "Licensed software testing" variant (ABB WaterMaster VDF Version 03.19).

ABB Ability™ Verification for measurement devices Version 03.94.05

To find your local ABB contact, visit: abb.com/contacts

For more information, visit: abb.com/measurement

The information contained in this document is to be kept strictly confidential. Any unauthorized use, reproduction, distribution or disclosure without written express consent by ABB is strictly forbidden. This report and its contents are being issued for informational purposes only.

For further details regarding ABB's warranties arising from the usage of the information including by you or any third party please refer to the Agreement, Copyright© 2017 ABB

AS FOUND CERTIFICATION FORWARD FLOW DIRECTION

PASS

CLIENT DETA							UIPMENT DE	
CUSTOMER	OCWA – Ka	wartha Lakes	Hub		MANUFACTURER			rohne
CONTACT	Nick Leroux			MODEL				C 300
	Senior Opera	ations Manage	er		. NUMBER		A08 0	03059
	123 East St S	3		FUSE			Lighting Pane	el #14
	Bobcaygeon	ON, KOM 1AC)					
	P: 705-623-7	278		PLANT	ID	Brech	in Community	/ Parl
	E nleroux@d	ocwa.com		METER	: ID		Pump Statio	n #0t
				FIT ID				N/A
				CLIENT	TAG			N/A
				OTHER	t			N/A
VER. BY - FM	Art Pencilo			GPS C	OORDINATES	N 44 32.	760 W 079°1	0.769
Quality Mana	agement Stand quipment and	dards Inform	ation -	VERIFI	CATION DATE		June 21st	2023
conduct this	verification te	st is found in	our AC-		REQUENCY			เกกนอ
	ent at the time				UE DATE			2024
conducted.				O, 12. O	02 07112		30110	202-
	NG PARAMET		150	40.50		D TOTALIZE	R INFORMA	
DIAMETER (DI	•	mm	150	AS FOL			702554.7	M3
F.S. FLOW - M		LPS	160,1	AS LEF			702560 3	M
F.S. RANGE - (LPS	60.000	DIFFER	RENCE		5.6	M3
		GK	2.97280				TEST CRIT	
	DR	SOIN.						
	DR	OR			IND CERTIFICATI			,
CAL. k-FACTO	DR	OK		FORW	ARD FLOW DIREC	CTION		Yes
	DR .	ON.		FORW		CTION		Yes
	DR .	OK.		FORW/ ALLOW	ARD FLOW DIRECT	CTION	ONENTS TES	Ye:
	DR			FORW/ ALLOW CONVE	ARD FLOW DIRECT ABLE [%] ERROR ERTER DISPLAY	CTION	ONENTS TES	Ye: 1: STE [
	DR	- GN		FORWALLOW CONVE MA OU	ARD FLOW DIRECTABLE [%] ERRORERTER DISPLAY TPUT	CTION	ONENTS TES	Ye: 1! STEC ye: ye:
	OR			FORWALLOW CONVE MA OU TOTAL	ARD FLOW DIRECTABLE [%] ERRORETTER DISPLAY TPUT IZER	COMP	ONENTS TES	Yes 15 STEC yes yes
CAL. k-FACTO				FORWALLOW CONVE MA OU TOTAL	ARD FLOW DIRECTOR ARDE [%] ERROR ERTER DISPLAY TPUT IZER ACY BASED ON [COMP	-	Yes 15 STEC yes yes Yes yes
		LPS	0.000	FORWALLOW CONVE MA OU TOTAL	ARD FLOW DIRECTABLE [%] ERRORETTER DISPLAY TPUT IZER	COMP	-	Yes 15 STEC yes yes Yes yes
CAL. k-FACTO	ow			FORWALLOW CONVE mA OU TOTAL ACCUR ERROR	ARD FLOW DIRECTOR ARD FLOW DIRECTOR ARD FLOW DISPLAY TPUT IZER ACY BASED ON [12]	COMP COMP % o.r.] THIS REPOR	T; BASED ON ⁽	Yes 15 STEC yes yes Yes yes
CAL. k-FACTO	ow		0.0	FORWALLOW CONVE	ARD FLOW DIRECTOR ARD FLOW DIRECTOR ARD FLOW DISPLAY TPUT IZER ARCY BASED ON (1) TO COMMENTED IN 1.0	COMPO	T; BASED ON	Yes 15 STED yes yes Yes yes
CAL. k-FACTO	ow		0.0	FORWALLOW CONVE	ARD FLOW DIRECTOR ARD FLOW DIRECTOR ARD FLOW DISPLAY TPUT IZER ARCY BASED ON (1) DOCUMENTED IN 10.0	COMPO	m/s	Yes 15 STED yes yes Yes yes
CAL. k-FACTO Zero Offset Flo	OW SIMULATION		0.0 0.0 0.0	FORWALLOW CONVE	ARD FLOW DIRECTOR ARD FLOW DIRECTOR ARD FLOW DISPLAY TPUT IZER ARCY BASED ON [12] DOCUMENTED IN 1.0 10.0 26.7	**COMP(************************************	m/s % F.S. Flo	Yes 15 STED yes yes yes yes yes yes
Zero Offset Flo	OW SIMULATION ATE		0.0 0.0 0.0 0.0 0.000	FORWALLOW CONVE	ARD FLOW DIRECTOR ARD FLOW DIRECTOR ARD FLOW DISPLAY TPUT IZER ARCY BASED ON [12] DOCUMENTED IN 10.0 10.0 26.7 16.01	COMP(% o.r.) THIS REPORT 2.0 20.0 53.4 32.02	m/s % F.S. Flo % F.S. Rai	Yes 15 STED yes yes yes yes yes yes nge
Zero Offset Flo	OW SIMULATION ATE		0.0 0.0 0.0 0.00 0.000 0.004	FORW/ ALLOW CONVE mA OU TOTAL! ACCUR ERROR 0.5 5.0 13.3 8.01 7.9	ARD FLOW DIRECT ABLE [%] ERROR ERTER DISPLAY TPUT IZER ACY BASED ON [8] DOCUMENTED IN 10.0 10.0 26.7 16.01 15.8	% o.r.] THIS REPORT 2.0 20.0 53.4 32.02 31.7	m/s % F.S. Flo % F.S. Rai LPS LPS	Yes 15 STED yes yes yes yes yes o.r.
Zero Offset Flo FLOW TUBE S REF. FLOW R/MUT [Reading]	SIMULATION ATE		0.0 0.0 0.0 0.000 0.004 0.004	0.5 5.0 13.3 8.01 7.9 -0.095	ARD FLOW DIRECT ABLE [%] ERROR ERTER DISPLAY TPUT IZER LACY BASED ON [8] DOCUMENTED IN 10.0 10.0 26.7 16.01 15.8 -0.212	% o.r.] THIS REPOR 2.0 20.0 53.4 32.02 31.7 -0.325	m/s % F.S. Flo % F.S. Rai LPS LPS LPS	Yes 15 STED yes yes yes yes yes o.r.
Zero Offset Flo FLOW TUBE S REF. FLOW R MUT [Reading] MUT [Differenc MUT [% Error]	SIMULATION ATE] Deli		0.0 0.0 0.0 0.000 0.004 0.004 n/a	0.5 5.0 13.3 8.01 7.9 -0.095 -1.19	ARD FLOW DIRECT ABLE [%] ERROR ERTER DISPLAY TPUT IZER ACY BASED ON [8] DOCUMENTED IN 10.0 26.7 16.01 15.8 -0.212 -1.33	% o.r.] THIS REPOR 2.0 20.0 53.4 32.02 31.7 -0.325 -1.01	m/s % F.S. Flo % F.S. Rai LPS LPS LPS	Yes 15 STED yes yes yes yes yes o.r.
Zero Offset Flo FLOW TUBE S REF. FLOW R MUT [Reading] MUT [Differenc MUT [% Error]	SIMULATION ATE] Deli		0.0 0.0 0.0 0.000 0.004 0.004 n/a 4.000	0.5 5.0 13.3 8.01 7.9 -0.095 -1.19 6.135	ARD FLOW DIRECT ABLE [%] ERROR ERTER DISPLAY TPUT IZER LACY BASED ON [8] DOCUMENTED IN 10.0 10.0 26.7 16.01 15.8 -0.212 -1.33 8.270	% o.r.] THIS REPOR 2.0 20.0 53.4 32.02 31.7 -0.325 -1.01 12.540	m/s % F.S. Flo % F.S. Rai LPS LPS LPS	Yes 18 STEC yes yes yes yes yes yes
Zero Offset Flo FLOW TUBE S REF. FLOW R/MUT [Reading] MUT [Difference	OW SIMULATION ATE] Ce]	LPS	0.0 0.0 0.0 0.000 0.004 0.004 n/a	0.5 5.0 13.3 8.01 7.9 -0.095 -1.19 6.135 6.118	ARD FLOW DIRECT ABLE [%] ERROR ERTER DISPLAY TPUT IZER LACY BASED ON [8 DOCUMENTED IN 10.0 26.7 16.01 15.8 -0.212 -1.33 8.270 8.230	% o.r.] THIS REPORT 2.0 20.0 53.4 32.02 31.7 -0.325 -1.01 12.540 12.456	m/s % F.S. Flo % F.S. Rai LPS LPS LPS	Yes 18 STEC yes yes yes yes yes yes
Zero Offset Flo FLOW TUBE S REF. FLOW RA MUT [Reading] MUT [Differenc MUT [% Error] THE COUTPUT MUT [Reading]	OW SIMULATION ATE] Ce]	LPS	0.0 0.0 0.0 0.000 0.004 0.004 0.004 n/a 4.000 mA 4.001	0.5 5.0 13.3 8.01 7.9 -0.095 -1.19 6.135 6.118 -0.017	ARD FLOW DIRECT ABLE [%] ERROR ERTER DISPLAY TPUT IZER LACY BASED ON [8 DOCUMENTED IN 10.0 26.7 16.01 15.8 -0.212 -1.33 8.270 8.230 -0.040	% o.r.] THIS REPORT 2.0 20.0 53.4 32.02 31.7 -0.325 -1.01 12.540 12.456 -0.084	m/s % F.S. Flo % F.S. Rai LPS LPS LPS MA MA	Yes 18 STEC yes yes yes yes yes yes
Zero Offset Flo FLOW TUBE S REF. FLOW R/ MUT [Reading] MUT [Differenc MUT [% Error] MUT [Reading] MUT [Continue of the continue of the contin	OW SIMULATION ATE Cel mir max	LPS 1. 4.000 x. 20.000	0.0 0.0 0.0 0.000 0.004 0.004 0.004 n/a 4.000	0.5 5.0 13.3 8.01 7.9 -0.095 -1.19 6.135 6.118	ARD FLOW DIRECT ABLE [%] ERROR ERTER DISPLAY TPUT IZER LACY BASED ON [8 DOCUMENTED IN 10.0 26.7 16.01 15.8 -0.212 -1.33 8.270 8.230	% o.r.] THIS REPOR 2.0 20.0 53.4 32.02 31.7 -0.325 -1.01 12.540 12.456 -0.084 -0.67	m/s % F.S. Flo % F.S. Rai LPS LPS LPS MA MA MA	Yes 18 STEC yes yes Yes yes yes yes
Zero Offset Flo FLOW TUBE S REF. FLOW R/ MUT [Reading] MUT [Differenc MUT [W Error] MUT [Reading] MUT [Differenc MUT [W Error] TOTALIZER - I	OW SIMULATION ATE Cel mir max	LPS 1. 4.000 x. 20.000	0.0 0.0 0.0 0.000 0.004 0.004 0.004 n/a 4.000 mA 4.001	0.5 5.0 13.3 8.01 7.9 -0.095 -1.19 6.135 6.118 -0.017	ARD FLOW DIRECT ABLE [%] ERROR ERTER DISPLAY TPUT IZER LACY BASED ON [8 DOCUMENTED IN 10.0 26.7 16.01 15.8 -0.212 -1.33 8.270 8.230 -0.040	% o.r.] THIS REPOR 2.0 20.0 53.4 32.02 31.7 -0.325 -1.01 12.540 12.456 -0.084 -0.67 32.025	m/s % F.S. Flo % F.S. Rai LPS LPS LPS MA MA MA MA LPS	Yes 1! yes yes yes yes yes yes
Zero Offset Flo FLOW TUBE S REF. FLOW RA MUT [Reading] MUT [Difference MUT [% Error] MUT [Reading] MUT [Difference MUT [% Error] MUT [% Error] FOTALIZER - I	OW SIMULATION ATE Cel mir max	LPS 1. 4.000 x. 20.000	0.0 0.0 0.0 0.000 0.004 0.004 0.004 n/a 4.000 mA 4.001	0.5 5.0 13.3 8.01 7.9 -0.095 -1.19 6.135 6.118 -0.017	ARD FLOW DIRECT ABLE [%] ERROR ERTER DISPLAY TPUT IZER LACY BASED ON [8 DOCUMENTED IN 10.0 26.7 16.01 15.8 -0.212 -1.33 8.270 8.230 -0.040	% o.r.] THIS REPOR 2.0 20.0 53.4 32.02 31.7 -0.325 -1.01 12.540 12.456 -0.084 -0.67	m/s % F.S. Flo % F.S. Rai LPS LPS LPS MA MA MA MA LPS M3	Yee 1:1
Zero Offset Flo FLOW TUBE S REF. FLOW RA MUT [Reading] MUT [Difference MUT [% Error] MUT [Reading] MUT [Difference MUT [% Error] TOTALIZER [M	OW SIMULATION ATE Cel mir max	LPS 1. 4.000 x. 20.000	0.0 0.0 0.0 0.000 0.004 0.004 0.004 n/a 4.000 mA 4.001	0.5 5.0 13.3 8.01 7.9 -0.095 -1.19 6.135 6.118 -0.017	ARD FLOW DIRECT ABLE [%] ERROR ERTER DISPLAY TPUT IZER LACY BASED ON [8 DOCUMENTED IN 10.0 26.7 16.01 15.8 -0.212 -1.33 8.270 8.230 -0.040	% o.r.] THIS REPOR 2.0 20.0 53.4 32.02 31.7 -0.325 -1.01 12.540 12.456 -0.084 -0.67 32.025	m/s % F.S. Flo % F.S. Rai LPS LPS LPS MA MA MA MA LPS	Yes 1! STEL yes yes yes yes yes yes nge
Zero Offset Flo FLOW TUBE S REF. FLOW R/ MUT [Reading] MUT [Differenc MUT [% Error] MUT [Reading] MUT [Continue of the continue of the contin	SIMULATION ATE mir ce max REF. FLOW RA	LPS 1. 4.000 x. 20.000	0.0 0.0 0.0 0.000 0.004 0.004 0.004 n/a 4.000 mA 4.001	0.5 5.0 13.3 8.01 7.9 -0.095 -1.19 6.135 6.118 -0.017	ARD FLOW DIRECT ABLE [%] ERROR ERTER DISPLAY TPUT IZER LACY BASED ON [8 DOCUMENTED IN 10.0 26.7 16.01 15.8 -0.212 -1.33 8.270 8.230 -0.040	% o.r.] THIS REPORT 2.0 20.0 53.4 32.02 31.7 -0.325 -1.01 12.540 12.456 -0.084 -0.67 32.025 2	m/s % F.S. Flo % F.S. Rai LPS LPS LPS MA MA MA MA LPS M3	Yes 18 STEC yes yes yes yes yes yes

COMMENTS	QUALITY MANAGEME	QUALITY MANAGEMENT STANDARDS INFO.				
	[QMS] INFORMATION	[QMS] INFORMATION IDENT. ID#				PASS
	[REFERENCE] FTS	KRO	1	TEST	% о.г.	FAIL
	PROCESS METER	PM	AZ	DISPLAY	-1.18	PASS
	ANALOG METER	AM	N/A	mA OUTPUT	-0.35	PASS
	STOP WATCH	SW	YES	TOTALIZER	-2.19	PASS
						1 1

This report reflects the test results of the overall accuracy for the above flow converter using the specified manufacturers flow tube simulator to within the specified tolerance as identified within this report.

[MUT] AS FOUND

[MUT] AS LEFT

FAIL PASS

CUSTOMER OCWA - Kawartha Lakes Hub

CONTACT

Nick Leroux

Senior Operations Manager

123 East St S

Bobcaygeon ON, K0M 1A0

P: 705-623-7278 E:nleroux@ocwa.com

Art Pencilo

VER. BY

Quality Management Standards Information -Standards, reference equipment, and instrumentation used to conduct this test outlining the lot#, and expiry date is found in our current

QMS document.

[MUT] MANUFACTURER

MODEL

SERIAL NUMBER

CLIENT TAG

LOCATION **OTHER**

GPS COORDINATES

ABB

AX460/600010/STD

3K22000652669

n/a Lagon City STP

Final Effluent Flow

N 44°33,467 W 079°12,436

TOLERANCE [pH]

0.1

VERIFICATION DATE CAL. FREQUENCY CAL. DUE DATE

June 21st 2023 Annual June 2024

pH VERIFICATION **NIST TRACEABLE (BUFFERS)**

BEFORE CALIBRATION

REF	ERENCE BU	RENCE BUFFER [MUT] READINGS				
pH BUFFER	TEMP.	pH CORRECTED	рН	TEMP.	pH - ERROR DIFF.	PASS FAIL
4.01	14.8	4.00	4.33	14.8	0.33	FAIL
7.01	14.8	7.04	7.04	14.8	0.00	PASS
		10			RESULT	FAIL

AFTER CALIBRATION

REFI	ERENCE BU	FFER	[MUT] READINGS					
pH BUFFER	TEMP.	pH CORRECTED	pН	TEMP.	pH - ERROR DIFF.	PASS FAIL		
4.01	14.8	4.00	4.00	16,2	0.00	PASS		
7.01	14.8	7.04	7.00	16.2	-0.04	PASS		
					RESULT	PASS		

COMMENTS			
Slope: 90.0%	[QMS] INFORMATJON	<u>ITEM</u>	<u>ID#</u>
	[REFERENCE] 4.01 BUFFER	pHBUFF4	1
	7.01 BUFFER	pHBUFF7	1
	TEMPERATURE REF.	DDTEMP	1

NIST Traceable Buffers were used to confirm the overall accuracy of this instrument. "AS FOUND" readings and "AS FOUND" readings are reported within this report. A temperature device was used to measure and record the buffer temperature to correct for pH values due to the effects related to buffer temperature.

Appendix III

Biosolids Summary

Facility: LAGOON CITY WASTEWATER TREATMENT PLANT

Solids & Nutrients Period: 01/01/2023 to 12/31/2023 Works: 1617 / Digestor Type: Aerobic

Last 4 Samples

Solids & Nutrients

Metals & Criteria

Facility Works Number:

120002255

Receiver:

Wetland area draining to Lake

Facility Owner:

Municipality: The Township of Ramara

Service Population:

2420

Facility Classification:

Class 2 Wastewater Treatment

Total Design Capacity:

Note: all parameters in this report are derived from the Bslq Station

Month	Hauled Vol. (m³)	Total Solids (mg/L)	Volatile Solids (mg/L)	Total Phosphorus (mg/L)	Total Ammonia Nitrogen	Nitrate as N (mg/L)	Nitrite as N (mg/L)	Total Kjeldahl Nitrogen	Ammonia + Nitrate (mg/L)	Potassium (mg/L)
	\ <i>/</i>	(6/ -/	(***8/ =/	(6/ -/	(mg/L)	(6/ -/	(6/ -/	(mg/L)	(1116/ -)	(1116/ =/
Parameter Short	HauledVol	TS	VS	TP	NH3p_NH4p_N	NO3-N	NO2-N	TKN	Calculation in	K
Name									Report	
T/S	IH Month.Total	Lab Published	Lab Published	Lab Published	Lab Published	Lab Published	Lab Published	Lab Published	- no T/S	Lab Published
		Month Mean	Month Mean	Month Mean	Month Mean	Month Mean	Month Mean	Month Mean		Month Mean
Jan		23,000.00	17,800.00	500.00	11.50	0.30	0.20	904.00	5.90	54.00
Feb		26,800.00	14,700.00	660.00	8.00	0.30	0.20	809.00	4.15	78.00
Mar		10,900.00	6,070.00	460.00	2.60	0.30	1.20	583.00	1.45	54.00
Apr		25,900.00	14,900.00	510.00	9.00	0.30	0.30	640.00	4.65	48.00
May	495.00	21,800.00	11,700.00	443.00	7.10	0.30	0.20	561.00	3.70	47.00
Jun		27,000.00	14,100.00	561.00	24.00	3.00	4.00	518.00	13.50	47.00
Jul		29,200.00	16,800.00	513.00	30.90	3.00	3.00	852.00	16.95	43.00
Aug										
Sep		2,710.00	1,660.00	43.00	14.60	3.00	3.00	126.00	8.80	15.00
Oct	540.00	33,100.00	17,400.00	632.00	25.00	3.00	3.00	915.00	14.00	51.00
Nov		39,300.00	20,600.00	653.00	6.70	3.00	3.00	863.00	4.85	66.00
Dec		36,000.00	19,200.00	689.00	16.70	3.00	3.00	588.00	9.85	51.00
Average	517.50	25,064.55	14,084.55	514.91	14.19	1.77	1.92	669.00	7.98	50.36
Total	1,035.00	275,710.00	154,930.00	5,664.00	156.10	19.50	21.10	7,359.00	87.80	554.00

Page 1 / 1 URL: /PDMReport

Facility: LAGOON CITY WASTEWATER TREATMENT PLANT

Metals & Criteria Period: 01/01/2023 to 12/31/2023 Works: 1617 / Digestor Type: Aerobic

Solids & Nutrients

Metals & Criteria

Last 4 Samples

Note: all parameters in this report are derived from the Bslq Station

Month	Arsenic (mg/L)	Cadmium (mg/L)	Cobalt (mg/L)	Chromium (mg/L)	Copper (mg/L)	Mercury (mg/L)	Molybdenum (mg/L)	Nickel (mg/L)	Lead (mg/L)	Selenium (mg/L)	Zinc (mg/L)
Parameter Short Name	As	Cd	Со	Cr	Cu	Hg	Мо	Ni	Pb	Se	Zn
T/S	Lab Published	Lab Published	Lab Published	Lab Published	Lab Published	Lab Published	Lab Published	Lab Published	Lab Published	Lab Published	Lab Published
1,5	Month Mean	Month Mean	Month Mean	Month Mean	Month Mean	Month Mean	Month Mean	Month Mean	Month Mean	Month Mean	Month Mean
Jan	0.10	0.01	0.03	0.29	4.10	0.00	0.05	0.25	0.20	0.10	10.00
Feb	0.20	0.02	0.04	0.37	5.20	0.01	0.08	0.35	0.20	0.10	13.00
Mar	0.10	0.01	0.03	0.26	3.70	0.01	0.05	0.23	0.10	0.10	9.00
Apr	0.20	0.01	0.02	0.26	3.30	0.00	0.05	0.22	0.20	0.10	9.00
May	0.10	0.01	0.03	0.23	3.10	0.01	0.05	0.22	0.10	0.10	8.00
Jun	0.20	0.02	0.03	0.31	4.00	0.01	0.06	0.28	0.20	0.10	10.00
Jul	0.10	0.02	0.03	0.29	4.40	0.01	0.06	0.27	0.20	0.10	11.00
Aug											
Sep	0.10	0.01	0.01	0.02	0.40	0.00	0.05	0.04	0.10	0.10	1.00
Oct	0.20	0.02	0.04	0.35	5.10	0.01	0.06	0.31	0.20	0.10	13.00
Nov	0.20	0.02	0.04	0.46	5.20	0.01	0.06	0.33	0.20	0.10	14.00
Dec	0.20	0.02	0.05	0.60	5.60	0.01	0.06	0.38	0.30	0.10	15.00
Average	0.15	0.01	0.03	0.31	4.01	0.01	0.06	0.26	0.18	0.10	10.27
Max. Permissible Metal Concentrations (mg/kg of Solids)	170.00	34.00	340.00	2,800.00	1,700.00	11.00	94.00	420.00	1,100.00	34.00	4,200.00
Metal Concentrations in Sludge (mg/kg)	6.17	0.57	1.27	12.48	159.95	0.23	2.29	10.45	7.25	3.99	409.85

URL: /PDMReport Page 1/1