Brechin/Lagoon City Sewage Treatment Plant

Annual Wastewater Performance Report

Prepared For: The Township of Ramara

Reporting Period of January 1st – December 31st, 2022

Issued: March 29, 2023 Revision: 0

Operating Authority:

Table of Contents

Background1
Summary and Interpretation of Monitoring Data
Summary of Influent Flow Data2
Hydrualic Reserve Capacity
Summary of Effluent Flow Data
Description of Operating Problems Encountered8,9, 10
Summary of Maintenance10
Summary of Effluent Quality Ensurance and Control Measures 11
Summary of Calibration and Maintenance on Effluent Monitoring Equipment
Summary of Efforts Made and Results Achieved to Meet Effluent Objective12
Volume of Sludge Generated in Reporting Period17
Summary of Complaints Received during the Reporitng Period17, 18
Summary of By-passes, Spills and Other Discharges
Status update on Initial Effluent Characterization18
Any other information the District Manger Requires from time to time18

List of Tables

Table 1	Historical Sewage Flows and Generation Rates
Table 2	Minimum Raw Sewage Sampling Requirements
Table 3	Minimum Effluent Sampling Requirements
Table 4	2022 Annual Average Concentration and Loading
Table 5	Monthly Septage Volumes
Table 6	Brechin Lagoon City WWTP Operational Challenges
Table 7	Brechin/Lagoon City WWTP – Summary of Influent and Final Effluent Monitoring Equipment
Table 8	Efforts Made to Meet the Effluent Objectives of Condition 9
Table 9	Monthly CBOD5 Final Effluent Concentration Objective Comparisons
Table 10	Monthly TSS Final Effluent Concentration Objective Comparisons
Table 11	Monthly TP Final Effluent Concentration Objective Comparisons
Table 12	Monthly E. Coli Final Effluent Concentration Objective Comparisons
Table 13	Monthly pH Final Effluent Concentration Objective Comparisons
Table 14	Weekly Final Effluent pH, Temperature and Calculated Un-ionized Ammonia
Table 15	Monthly Influent Sample Result Concentration Averages
Table 16	Monthly Sludge Generation Volumes

Appendicies

Appendix I	Performance Assessment Report
Appendix II	Annual Calibration Reports
Appendix III	Biosolids Summary

Background:

The Environmental Compliance Approval (ECA) No. 1114-745MQT issued on June 6th, 2007 was revoked and replaced by ECA No. 8497-8D3TU7 issued on June 28th, 2012. Condition 9 (5) in ECA No. 8497-8D3TU7 state the requirements for annual performance reports. The 2022 performance report has been prepared following the conditions of ECA No. 8497-8D3TU7, 9 (5). The Ontario Clean Water Agency was the operating authority during the reporting period January 1st-December 31st, 2022.

Environmental Certificate of Approval (ECA) No. 8497-8D3TU7 Section 9(5) requires the Performance Report to contain the following:

- a) Summary and interpretation of all monitoring data and a comparison to the effluent limits outlined in Condition 5, including on overview of the success and adequacy of the sewage Works;
- b) a description of any operating problems encountered and corrective actions taken;
- c) a summary of all maintenance carried out on any major structure, equipment, apparatus, mechanism or thing forming part of the Works;
- d) a summary of any effluent quality assurance or control measures undertaken in the reporting period;
- *e)* a summary of the calibration and maintenance carried out on all effluent monitoring equipment;
- *f)* a description of efforts made and results achieved in meeting the Design Objectives of Condition 4;
- g) a tabulation of the volume of sludge generated in the reporting period, an outline of anticipated volumes to be generated in the next reporting period and a summary of the locations to where the sludge was disposed;
- *h)* a summary of any complaints received during the reporting period and any steps taken to address the complaints;
- *i)* a summary of all By-pass, spill or abnormal discharge events;
- *j)* Status update of the initial effluent characterization as per Condition 8 subsection (1) until it has been completed and the required report has been submitted; and
- k) any other information the District Manager requires from time to time; and

This report will show that the Ontario Clean Water Agency has made every attempt to achieve its goals through its operational performance. This performance was enhanced through the use of an electronic process data collection database, an electronic maintenance and work order database, an electronic operational excellence database, a training program focused on providing the right skills to staff - also captured and tracked by the use of an electronic database and a multi-skilled, flexible workforce.

This report will show that the requirements of the facility ECA including effluent monitoring and reporting requirements were consistently met and that effluent quality was consistently within ECA requirements.

ECA No. 8497-8D3TU7 Condition 9(5)(a)

Summary of Influent Flow Data

Environmental Compliance Approval (ECA) No. *8497-8D3TU7*, issued for the Brechin/Lagoon City WWTP Condition 9(5)(a) requires a Summary and interpretation of all monitoring data and a comparison to the effluent limits outlined in Condition 5, including on overview of the success and adequacy of the sewage Works.

Condition 4(2)(b) of the (ECA) No. 8497-8D3TU7 indicates best efforts are to be made to operate at the rated capacity of the works. The rated capacity for the Brechin/Lagoon City Wastewater Treatment Plant is 2,273 m^3 /day and the annual average daily influent flow was 1,165.39 m^3 /day or 51.3 % of the rated capacity.

The total Influent flow in 2022 was 425,366.13 m³

Graph 1: 2022 Influent Flow Monthly Totals

Graph 2: 2022 Influent Daily Minimum, Maximum and Average Flows

Note: The above table shows exceedances in maximum flows during March, June and December. The spikes in flows were due to weather events/snowmelt in correlation with significant inflow and infiltration during these weather events. However, the average daily flow for the works was below the rated capacity.

Year	Number of Connections*	Equivalent Population**	Average Daily Flow (m³/day)	Maximum Daily Flow (m³/day)	Rated Capacity (m³/day)	Sewage Generation Rate (L/cap/day)
2012	1158	2405	1138	2915	2273	473
2013	1159	2408	1341	3204	2273	557
2014	1159	2414	1641	5094	2273	681
2015	1162	2414	1262	3313	2273	523
2016	1165	2420	1255	4735	2273	517
2017	1170	2431	1566	4213	2273	644
2018	1174	2439	1430	4260	2273	586
2019	1175	2441	1481	3686	2273	607
2020	1179	2650	1393	3462	2273	526
2021	1179	2650	1257	3995	2273	474
2022	1140	2391	1165	3853	2273	487
3 Year Average		2564	1272	3995	2273	496

Brechin Lagoon City Sewage Works Historical Flows Table 1: Historical Sewage Flows and Generation Rates

*The number of connections were recalculated by the Township of Ramara, the number of connections in 2022 reflect the number that will be used going forward.

**Based on estimated service connections in Lagoon City and Brechin: 998 and 152 single family dwellings. The estimated population in Lagoon City: 1,996 (based on a population density of 2.0 persons per dwelling), and the estimated population in Brechin: 395 (based on a population density of 2.6 persons per dwelling). Assumptions made on location of new developments for 2022 connections for population estimation. Note: This calculation was completed based on current connections in the system, growth within the collection system has not been considered.

Note: Typically, the system is well under the design capacity, significant inflow and infiltration during wet weather events skew the reserve capacity results.

Hydraulic Reserve Capacity

In accordance with the MECP Procedure D-5-1, the reserve capacity is calculated by the following formula: Hydraulic Reserve Capacity= Design Flow- Committed Flow

The design flow is equal to the maximum permissible flow approved by the Amended Environmental Compliance Approval. (ECA) No. 8497-8D3TU7 maximum permissible flow is: 2273 m³/day. The committed flow is equal to the total expected flow by the existing and proposed connections based on the previous 3-year average daily flow.

The built-out service area of the Brechin/Lagoon City Sewage Works has a total of 1269 units. The three-year (2020-2023) average sewage generation rate is: 496 L/cap/day. With the current population of 2391 there is a projection of 1,186 m³/day of committed sewage flow. The estimated hydraulic reserve capacity for the Brechin Lagoon City Sewage Works in 2022 is 1087 m³/day.

Summary of Effluent Flow Data

Environmental Compliance Approval (ECA) No. *8497-8D3TU7*, issued for the Brechin/Lagoon City WWTP Condition 9(5)(a) requires a summary and interpretation of all monitoring data and a comparison to the effluent limits outlined in Condition 5, including on overview of the success and adequacy of the sewage Works.

Condition 4(2)(b) of the (ECA) No. 8497-8D3TU7 indicates best efforts are to be made to operate at the rated capacity of the works. The rated capacity for the Brechin/Lagoon City Wastewater Treatment Plant is 2,273 m³/day and the annual average daily effluent flow was 1,147.74m³/day or 50.5 % of the rated capacity

The total effluent flow in 2022 was 418 924 m³

Graph 3: 2022 Effluent Flow Monthly Totals

Graph 4: 2022 Effluent Daily Minimum, Maximum and Average Flows

Note: The above table shows exceedances in maximum flows during March, June and December. The spikes in flows were due to weather events/snowmelt in correlation with significant inflow and infiltration during these weather events. However, the average daily flow for the works was below the rated capacity.

Summary of Sampling Frequency

ECA No. *8497-8D3TU7* Condition 7(3) describes the requirement for sample collection at the following locations, frequencies and by means of the specified sample type and analyzed for each parameter listed and all results recorded:

Table 2: Minimum Raw Sewage Sampling Requirements

Influent Sampling Point				
Parameters Sample Type Frequency				
BOD5	8 Hour Daytime Composite	Monthly		
Total Suspended Solids	8 Hour Daytime Composite	Monthly		
Total Phosphorus	8 Hour Daytime Composite	Monthly		
Total Kjeldahl Nitrogen	8 Hour Daytime Composite	Monthly		

Table 3: Minimum Effluent Sampling Requirements

Final Effluent Sampling Point				
Parameters	Sample Type	Frequency		
CBOD5	24-Hour Composite	Weekly		
Total Suspended Solids	24-Hour Composite	Weekly		
Total Phosphorus	24-Hour Composite	Weekly		
Total Ammonia Nitrogen	24-Hour Composite	Weekly		
Nitrates	24-Hour Composite	Weekly		
рН	Grab/Probe	Weekly		
Temperature	Grab/Probe	Weekly		
E. coli	Grab	Weekly		

Final Effluent Parameter Summary

The following tables provide a summary of the monitoring data for the Brechin/Lagoon City WWTP compared to the effluent limits and objectives outlined in Condition 4 and 5 of ECA No. *8497-8D3TU7*.

A summary of the Final Effluent and Raw Sewage monitoring data is contained in Appendix I of this report.

Carbonaceous Biochemical Oxygen Demand (CBOD5)

ECA No. *8497-8D3TU7* sets the CBOD5 monthly average concentration limit at 10.00 mg/L and the objective at 8.0 mg/L. The monthly CBOD5 average concentration results throughout 2022 were in compliance with the limits and objectives outlined in ECA No. *8497-8D3TU7*.

CBOD5 Monthly Average Concentration

The monthly CBOD5 average concentration limit and monthly concentration objective were met each month in 2022.

Graph 5: 2022 Monthly CBOD5 Final Effluent Concentration Comparisons

Total Suspended Solids (TSS)

ECA No. *8497-8D3TU7* sets the TSS monthly average concentration limit at 15.0 mg/L and the objective at 12.0 mg/L. The monthly TSS average concentration results throughout 2022 were in compliance with the limits and objectives outlined in ECA No. *8497-8D3TU7*.

Total Suspended Solids Monthly Average Concentration

The monthly TSS monthly average concentration limit and monthly concentration objective were met each month in 2022.

Graph 6: 2022 Monthly TSS Final Effluent Concentration Comparisons

Total Phosphorus (TP)

ECA No. *8497-8D3TU7* sets the TP monthly concentration limit at 0.30 mg/L, the objective at 0.24mg/L and the annual average waste loading at 249 kg/year. The monthly TP average concentration results and annual average waste loading results throughout 2022 were in compliance with the limits and objectives outlined in ECA No. *8497-8D3TU7*.

Condition 5(2) of ECA No. *8497-8D3TU7* lists the Lake Simcoe Phosphorus Reduction Strategy effluent limits. These limits are set at an annual average concentration of 0.15 mg/L and annual average loading of 124 kg/Year.

Total Phosphorus Monthly Average Concentration

The monthly TP average concentration limit and monthly concentration objective were met each month in 2022.

Table 4: 2022 Annual Average Concentration and Loading

	U		<u> </u>			
Parameters	2022 Annual	Lake Simcoe	2022 Annual	Annual	Lake Simcoe	Compliant
	Average	Annual Average	Average	Loading	Annual	(Y/N)
	Concentration	Concentration	Loading	Limit	Concentration	
	(mg/L)	Limit	(Kg/year)	(Kg/year)	Limit/Objective	
		/Objective			(mg/L)	
Total	0.05	0.15	20.59	249	124	Yes
Phosphorus						

<u>E. Coli</u>

ECA No. *8497-8D3TU7*sets the monthly geometric mean density of E. Coli at 200 cfu/100mL and an objective of 100 cfu/100ml. The monthly geomean limit was met each month in 2022. The monthly geomean objective was met every month in 2022.

Graph 9: 2022 Monthly E. Coli Final Effluent Geometric Mean Comparisons

рH

ECA No. *8497-8D3TU7* has a pH compliance limit within the range of 6.0 to 9.5 and an objective within the range of 6.5-9.0, inclusive, at all times. The pH of the final effluent ranged from 6.69-7.71 throughout 2022 which is within the ECA compliance limit at all times.

Graph 10: 2022 Monthly pH Final Effluent Concentration Limit Comparisons

Graph 11: 2022 Monthly pH Final Effluent Concentration Objectives Comparisons

Summary of Septage Received

The Brechin/Lagoon City Wastewater Treatment Plant accepts septage from licensed haulers. See Table 4 for summary of volumes received in 2022.

Month	Volume (m ³)
January	16.28
February	17.79
March	25.55
April	27.25
May	56.02
June	52.99
July	30.28
August	15.14
September	26.49
October	7.57
November	0.00
December	28.20
Total	303.59

Table 5: Monthly Septage Volumes

ECA No. 8497-8D3TU7 Condition 9(5)(b) – Description of Operating Problems

ECA #8497-8D3TU7_Condition 9(5)(b) states that the annual performance report shall contain "a description of any operating problems encountered and corrective actions taken."

The following details describe all operating problems encountered during the reporting period and the corrective actions taken:

Month	Challenges	Corrective Actions
January	Pumping Station #2 pump blockage.	Contractor contacted, pump pulled, blockage removed.
	Aerator blockage.	Contractor contacted for repair. Blockage cleared aerator went back online.
	Main plant out of propane for heat.	Electric heaters turned on.
	Pumping Station #8 frequent high wet well level alarms.	Both pumps tested, miltronics issue.
February	Ice buildup by sensors in basin.	Remove ice from under sensor.
	Pumping Station #8 frequent high wet well level alarms.	Contractor contacted to repair and test.
	Drive Cable for Clarifier #3 failed.	Contractor contacted to repair.
March	High basin level alarm due to high flows.	Plant monitored, screw speed increased, siphons unblocked.
	High basin level due to high flows.	Plant monitored, screw speed increased, siphons unblocked.
April	Power outage, Pumping Station #3 unable to pump down with portable generator.	Monitoring, confirm operation upon power restoring. Contractor contacted to investigate transfer switch.
	Pumping Station #7 high level alarm, miltroincs failed.	Monitored, pumping station manually pumped down, miltroincs damaged from power spike, contractor contracted to repair/investigate.
	High basin level due to heavy rain event.	Plant monitored, screw speed increased, siphons unblocked.
	Pumping Station #2 pump blockage.	Contractor contacted, remove pump and clear debris.
	High basin level.	Plant monitored, screw speed increased.
Мау	Clarifier fault.	Unhooked issue, tighten cable, run clarifier on hand/monitor.
	Clarifier fault.	Started another clarifier, contracted contacted to repair.
June	New aerator hooked up.	Contractor contacted to install new aerator.
	Alum tank level sensor failure.	Level sensor repaired.
	One UV Bank not operating.	Contractor contacted to repair outlet.
July	Siphon failures.	Turn on in hand/ back into auto, power blips caused the issue.
	Screw pump failure.	Increased speed, pump came on. Re-primed siphons, monitor.
August	Pumping Station #4, Pump #1 failure.	Electrician contacted to reset/test pump #1.
September	Pumping Station #7- Miltronics Failure.	Contractor contacted to replace miltronics.
	Clarifier #2 Water Curtain failure.	Contractor onsite to replace water curtain.
	Aerator failure.	Contractors replaced aerator.

Table 6: Brechin Lagoon City WWTP Operational Challenges

	Aerator failure.	Aerators sent to contractor for repair.
October	Brechin/Lagoon City WWTP- communication failure.	Phone company contacted, facility monitored, Pumping Stations checked. Phone line repair, alarm testing completed.
December	High flows due to wet weather, Basin level float failure.	Plant monitored, siphons cleared, increase pump speed.
	Faulty solenoid on clarifier #3 pneumatic valve.	Electrician contacted to place the fault solenoid.
	High flows due to wet weather/snow melt.	Plant monitored, siphons cleared, increase pump speed.

ECA No. 8497-8D3TU7 Condition 9(5)(c) – Summary of Maintenance

ECA No. 8497-8D3TU7 Condition 11(4)(e) states that the annual performance report shall contain summary of all maintenance carried out on any major structure, equipment, apparatus or mechanism forming part of the Works."

Routine maintenance and operation of the Brechin/Lagoon City Wastewater Treatment Plant and Sewage Pumping Stations in 2022 consisted of the following:

- New miltronics installed for basin level monitoring
- New UV bank installed to replace old unit
- Adjusted chemical dosages
- Adjusted the speed of the screw conveyor to match incoming flows
- Attended to Hydro failures
- Blew out and restarted return activated sludge siphons
- Changed the oil in the digester blowers
- Cleaned secondary clarifiers
- Collected samples as per the ECA
- Conducted settleability tests of the MLSS
- Decanted the digesters to aeration basin
- De-iced mechanical aerators
- Exercised generators
- Flushed chemical pumps and lines
- Greased bearings of screw conveyor
- Observed speciation of microorganisms in MLSS with a microscope
- Mixed polymer solutions
- Performed routine maintenance and repair of pumps
- Pulled and cleaned or replaced UV bulbs
 - Full replacement of all UV bulbs and sleeves occurred Jan 10, 2022
- Pump Stations Cleaned
- Repair and replace aerator
- Respond to emergency alarms
- Wasted sludge as required to maintain appropriate MLSS concentration

ECA No. 8497-8D3TU7Condition 9(4)(d) – Summary of Effluent Quality Assurance or Control Measures Undertaken

ECA No. 8497-8D3TU7Condition 9(4)(d) states that the annual performance report shall contain "a summary of effluent quality assurance or control measures undertaken in the reporting period."

Effluent control measures include in-house sampling and testing for operational parameters such as suspended solids, soluble phosphorus, and dissolved oxygen. In-house testing provides real time results which are then evaluated to determine if process changes are necessary to enhance operational performance. All in-house sampling and analysis are performed by certified operations staff utilizing approved methods and protocols for sampling, analysis and recording as specified in the Ministry's Procedure F-10-1, "Procedures for Sampling and Analysis Requirements for Municipal and Private Sewage Treatment Works", the Ministry's publication, "Protocol for the Sampling and Analysis of Industrial/Municipal Wastewater" and the publication, "Standard Methods for the Examination of Water and Wastewater".

All final effluent samples collected during the reporting period to meet ECA sampling requirements were submitted to SGS Lakefield Research Ltd. laboratory for analysis, with the exception of pH, temperature and unionized ammonia. SGS Lakefield Research has been deemed accredited by the Canadian Association for Laboratory Accreditation (CALA), meeting strict provincial guidelines including an extensive quality assurance/quality control program. By choosing this laboratory, the Ontario Clean Water Agency is ensuring appropriate control measures are undertaken during sample analysis. The pH and temperature parameters were analyzed in the field at the time of sample collection by certified operators, to ensure accuracy and precision of the results obtained. The unionized ammonia was calculated using the total ammonia nitrogen concentration, pH and temperature as required by the facility Environmental Compliance Approval.

Effluent quality assurance is maintained in several ways. Laboratory samples are sent to an accredited laboratory (SGS Canada Inc. - Lakefield) for analysis of all effluent parameters. Sampling calendars issued to the operator which denote frequency of sampling. Calendars are used as a tracking mechanism throughout the month to ensure all required samples are collected. These calendars are submitted to the Process Compliance Technician at the end of each month for review. Raw and effluent samples are collected as per the Amended Environmental Compliance Approval and the results are reviewed on a regular basis to ensure compliance with the site's objectives and limits.

Work orders illustrating all scheduled and preventative maintenance to be completed are issued to the operator and/or mechanic. OCWA conducts internal audits of the facility and develops Action Plans to ensure deficiencies are identified.

ECA No. 8497-8D3TU7Condition 9(4)(e) – Summary of Calibration and Maintenance

ECA No. 8497-8D3TU7 Condition 9(4)(e) states that the annual performance report shall contain "a summary of the calibration and maintenance carried out on all effluent monitoring equipment."

Calibrations on effluent monitoring equipment were performed by Flowmetrix Technical Services Inc. on June 09, 2022 for equipment located at the Brechin/ Lagoon City Wastewater Treatment Plant. Please see Appendix II: Calibration Report.

Table 7: Brechin/Lagoon City WWTP – Summary of Influent and Final Effluent Monitoring Equipment – 2022		
Collection Monitoring Equipment	Date of Completion	
Pump Station #4 Flow Meter	June 09, 2022	
Pump Station #8 Flow Meter	June 09, 2022	
Influent Monitoring Equipment	Date of Completion	
Influent Flow Meter	June 09, 2022	
Final Effluent Monitoring Equipment	Date of completion	
Final Effluent Flow Meter	June 09, 2022	
*Online pH meter	June 09, 2022	

*It was not clearly identified that the online pH meter did not pass annual calibrations, consequently parts have been ordered along with the local MECP Inspector being notified upon discovery.

ECA No. 8497-8D3TU7 Condition 9(4)(f) – Description of Efforts Made

OCWA uses a number of best efforts to achieve the Effluent Objectives. Effluent quality assurance and control measures include in-house sampling and testing for operational parameters such as suspended solids, phosphorus, dissolved oxygen, etc. In-house testing provides real time results which are then used to enhance process and operational performance. OCWA also collects raw sewage and effluent samples as per the ECA and reviews these results on a regular basis to ensure compliance with the ECA objectives and limits.

OCWA uses a computerized maintenance management system which generates work orders to ensure maintenance of equipment is proactively performed. In addition, OCWA provides regular status reports to the Owner which includes operational data, equipment inventory, financial statements, maintenance activities and capital improvement recommendations.

OCWA has developed comprehensive manuals detailing operations, maintenance, instrumentation and emergency procedures. To ensure facilities are operated in compliance with applicable legal requirements, facility staff have access to a network of operational compliance and support experts at the cluster, region and corporate level.

Table 8	3: Efforts Made to Meet the Effluent Objectives of Condition 9
1.	Sampling effluent as per the ECA.
2.	Visual Inspection of the effluent while performing rounds.
3.	Annual calibration of the pH meter.
4.	Annual calibration of the flow meters.
5.	Performing preventative maintenance activities in accordance with work order schedules.
6.	Monitoring treatment processes through regular in-house checks and review of lab results.
7.	Sludge monitoring of primary clarifiers & adjustments to pumping volume based on tank levels
	to reduce solids carryover to the secondary clarifiers.
8.	Increase dissolved oxygen (DO) set point to aerations tanks to help with filamentous control.
9.	Visual review of microbiological activity of activated sludge to ensure appropriate F/M ratio
	and control filamentous.

The Brechin/Lagoon City WWTP was able to consistently meet the Effluent Objectives throughout 2022.

Carbonaceous Biochemical Oxygen Demand (CBOD5)

ECA No. 8497-8D3TU7sets the CBOD5 monthly average concentration objective at 8.0 mg/L.

	Average	Concentration	
Monthly	Concentration	Objective Target	Objective
Average	(mg/L)	(mg/L)	Achieved
January	2.4	8.0	Yes
February	3.0	8.0	Yes
March	2.8	8.0	Yes
April	2.0	8.0	Yes
May	2.0	8.0	Yes
June	2.0	8.0	Yes
July	2.5	8.0	Yes
August	2.2	8.0	Yes
September	2.0	8.0	Yes
October	2.0	8.0	Yes
November	2.0	8.0	Yes
December	2.8	8.0	Yes

Total Suspended Solids (TSS)

ECA No. 8497-8D3TU7 sets the TSS monthly average concentration objective at 12.0 mg/L.

	Average Concentration		Ohiective
Month	(mg/L)	(mg/L)	Achieved
January	2.6	12.0	Yes
February	4.3	12.0	Yes
March	3.0	12.0	Yes
April	4.0	12.0	Yes
May	3.0	12.0	Yes
June	2.8	12.0	Yes
July	3.0	12.0	Yes
August	3.0	12.0	Yes
September	4.0	12.0	Yes
October	2.4	12.0	Yes
November	2.5	12.0	Yes
December	3.5	12.0	Yes

Table 10: Monthly	TSS Final	Fffluent	Concentration	Objective	Comparisons
	y 133 1 11 ar	Linaciit	concentration	Objective	companisons

Total Phosphorus (TP)

ECA No. 8497-8D3TU7 sets the TP monthly average concentration objective at 0.24 mg/L.

	Average	Concentration	Objective
Month	(mg/L)	(mg/L)	Achieved
January	0.05	0.24	Yes
February	0.05	0.24	Yes
March	0.05	0.24	Yes
April	0.03	0.24	Yes
May	0.05	0.24	Yes
June	0.05	0.24	Yes
July	0.05	0.24	Yes
August	0.06	0.24	Yes
September	0.05	0.24	Yes
October	0.05	0.24	Yes
November	0.04	0.24	Yes
December	0.07	0.24	Yes

Table 11: Monthly TP Final Effluent Concentration Objective Comparisons

<u>E.Coli</u>

ECA No. 8497-8D3TU7 sets the monthly E. Coli geometric mean objective at 100 cfu/100mL.

		Concentration		
	Geometric Mean	Objective Target		
Month	(cfu/100mL)	(cfu/100mL)	Objective Achieved	
January	2.5	100	Yes	
February	3.7	100	Yes	
March	10.8	100	Yes	
April	19.3	100	Yes	
May	2.6	100	Yes	
June	30.4	100	Yes	
July	12.7	100	Yes	
August	22.8	100	Yes	
September	5.8	100	Yes	
October	1.7	100	Yes	
November	1.7	100	Yes	
December	2.4	100	Yes	

Table 12. Monthly	v F. Coli Final Effluent C	Concentration Oh	iective Comparisons

рH

The pH of the effluent ranged from 6.69–7.71 throughout 2022 which is within the ECA design objectives of 6.50 to 9.00, inclusive, at all times.

Month	Minimum	Maximum
January	7.58	7.71
February	7.51	7.55
March	7.45	7.56
April	7.42	7.53
May	7.45	7.52
June	7.00	7.45
July	6.85	6.91
August	6.73	7.34
September	6.69	6.95
October	6.90	7.03
November	7.03	7.06
December	7.00	7.16

Table 13: Monthly pH Final Effluent Concentration Objective Comparisons

Unionized Ammonia

The concentration of un-ionized ammonia is calculated using the total ammonia nitrogen, along with field pH and temperature using the methodology stipulated in "Ontario's Provincial Water Quality Objectives" dated July 1994, as amended. The following are the results for the calculated unionized ammonia.

Table 14: Weekl	y Final Effluent pH,	Temperature and	Calculated U	n-ionized Ammonia
-----------------	----------------------	-----------------	---------------------	-------------------

Date	Total Ammonia Nitrogen: NH3 + NH4+ as N [mg/L]	Field pH	Field temp 'C	Un-ionized Ammonia
01/04/2022	1.6	7.63	5.4	0.0088
01/12/2022	4.0	7.71	6.0	0.0276
01/19/2022	5.9	7.58	3.0	0.0237
01/24/2022	6.9	7.67	2.3	0.0322
01/31/2022	7.6	7.64	3.0	0.0350
02/09/2022	5.8	7.51	4.5	0.0224
02/14/2022	4.6	7.52	2.6	0.0156
02/22/2022	4.5	7.51	5.1	0.0183
02/28/2022	4.0	7.55	3.5	0.0156
03/09/2022	2.6	7.45	6.2	0.0100
03/14/2022	3.0	7.52	5.1	0.0125
03/21/2022	1.9	7.53	7.2	0.0096
03/28/2022	2.5	7.56	4.9	0.0112
04/06/2022	1.5	7.48	8.2	0.0073
04/11/2022	1.4	7.53	7.6	0.0073
04/19/2022	2.7	7.42	8.0	0.0112
04/24/2022	2.1	7.42	10.9	0.0110
05/04/2022	0.5	7.45	10.6	0.0027
05/09/2022	0.4	7.49	11.6	0.0026
05/16/2022	0.2	7.46	16.5	0.0018

05/24/2022	0.1	7.52	13.3	0.0008
05/30/2022	0.1	7.52	13.3	0.0008
06/06/2022	0.1	7.45	15.8	0.0008
06/13/2022	0.1	7.15	16.0	0.0004
06/20/2022	0.1	7.13	16.1	0.0004
06/27/2022	0.1	7.00	19.2	0.0004
07/06/2022	0.1	6.85	18.2	0.0002
07/11/2022	0.1	6.91	19.6	0.0003
07/18/2022	0.1	6.87	21.0	0.0003
07/25/2022	0.1	6.86	21.4	0.0003
08/02/2022	1.3	7.34	21.7	0.0127
08/08/2022	0.4	6.73	23.6	0.0011
08/16/2022	4.1	6.74	20.1	0.0090
08/22/2022	0.4	6.74	21.7	0.0010
08/29/2022	0.1	6.81	20.9	0.0003
09/07/2022	0.1	6.85	19.9	0.0003
09/12/2022	0.1	6.83	20.7	0.0003
09/19/2022	2.3	6.69	19.6	0.0043
09/27/2022	0.1	6.95	16.8	0.0003
10/04/2022	0.1	7.03	14.4	0.0003
10/11/2022	0.2	6.90	13.4	0.0004
10/17/2022	0.1	6.92	13.4	0.0002
10/24/2022	0.1	6.97	14.3	0.0002
10/31/2022	0.1	7.01	12.7	0.0002
11/07/2022	0.1	7.03	14.8	0.0003
11/14/2022	0.1	7.06	10.9	0.0002
11/21/2022	0.6	7.05	6.2	0.0009
11/28/2022	0.1	7.05	10.1	0.0002
12/07/2022	0.1	7.16	9.9	0.0003
12/12/2022	0.1	7.12	7.7	0.0002
12/20/2022	0.1	7.10	6.5	0.0002
12/28/2022	0.5	7.00	5.1	0.0006

Temperature

The final effluent temperature ranged from 2.3°C to 23.6°C.

Additional Parameters

The parameters listed below are collected as per ECA or regulatory requirements or for process optimization.

Influent Samples

Influent sampling is completed in order to make the necessary process adjustments to stay within the Final Effluent Objectives and limits set in the ECA.

	Biochemical	Total	Total	Total
	Oxygen	Suspended	Kjeldahl	Phosphorus –
	Demand -	Solids – TSS	Nitrogen –	ТР
Month	BOD5 (mg/L)	(mg/L)	TKN (mg/L)	(mg/L)
January	82.0	117.0	20.4	2.04
February	115.0	100.0	21.3	2.29
March	60.0	40.0	10.1	0.80
April	44.0	203.0	10.1	0.79
May	118.0	76.0	12.1	1.08
June	89.0	45.0	20.8	1.80
July	146.0	200.0	28.0	3.05
August	60.0	55.0	15.6	1.52
September	40.0	34.0	10.2	1.02
October	83.0	140.0	18.5	2.07
November	53.0	359.0	12.3	1.47
December	94.0	89.0	18.7	1.83

Table 15: Monthly Influent Sample Result Concentration Averages

ECA No. 8497-8D3TU7 Condition 9(5)(g) - Summary of Biosolids

The total volume of sludge generated in 2022 was 1305 m³ which was slightly higher than the amount of sludge generated in 2021. Wessuc Inc. has been contracted to haul, land apply the Biosolids on their approved sites. Monthly sludge sampled are collected & tested for metals listed in the Ontario Guidelines for Sewage Biosolids Utilization on Agricultural Lands. There is enough storage to store sludge at the Brechin/ Lagoon City WWTP for the rest of the year.

Month	Volume (m ³)			
January	0			
February	0			
March	0			
April	0			
May	585			
June	0			
July	0			
August	0			
September	0			
October	720			
November	0			
December	0			
Total	1305			

Table 16: Monthly Sludge Generation Volumes

The anticipated volume of biosolids for the next reporting period is not expected to be significantly different from this reporting period. There are no expected changes in the current sludge handling methods that are currently utilized. Refer to Appendix III: Biosolids Summary

ECA #8497-8D3TU7 Condition 9(5)(h) - Community Complaints

ECA #8497-8D3TU7 (5)(h) states that the annual performance report shall contain: *"a summary of any complaints received and any steps taken to address the complaints."* Refer to Table 17 below for summary.

During the 2022 reporting period there was no community complaints received.

ECA #8497-8D3TU7 Condition 9(5)(i) – Summary of all Bypass, Spill or Abnormal Discharge Events

During the 2022 reporting period there was no Bypasses, spills and abnormal discharge events.

ECA #8497-8D3TU7 Condition 9(5)(j) – Status Update of the Initial Effluent Characterization as per Condition 8 subsection (1) until it has been completed and the required report has been submitted.

The initial effluent characterization was submitted as per Condition 8 Section (1). No updates occurred during the reporting period.

ECA #8497-8D3TU7 Condition 9(5)(k)- any other information the *District Manager* requires from time to time.

The District Manager has not requested any additional information be included in this report.

Appendix I

Performance Assessment Report

Performance Assessment Report

From 1/1/2022 to 12/31/2022

Page 1 of 1

The matrix mark mark mark mark mark mark mark mark		1/2022	2/ 2022	3/ 2022	4/ 2022	5/ 2022	6/ 2022	7/ 2022	8/ 2022	9/ 2022	10/ 2022	11/ 2022	12/ 2022	<total></total>	<ava></ava>	<max></max>
Starter Starter Starter	Flows														5	
mar. Mar. Mar. Mar. Mar. Mar. Mar. Mar. M	Raw Flow: Total - Raw m ³ /d	26,658.40	24,735.60	52,333.60	53,484.20	40,441.20	47,478.80	29,259.80	30,810.00	29,849.30	28,174.70	25,587.80	36,552.73	425,366.13	1	1
marke from each of marked in the ma	Raw Flow: Avg - Raw m³/d	859.95	883.41	1,688.18	1,782.81	1,304.55	1,582.63	943.86	993.87	994.98	908.86	852.93	1,179.12		1,165.39	
Barene constant Barene con	Raw Flow: Max - Raw m³/d	1,305.20	1,399.20	2,873.60	2,438.00	1,735.60	3,853.10	1,197.20	1,291.30	1,248.50	1,093.70	1,152.30	2,762.90			3,853.1
ch mode from the mode 3.2.8.00 2.3.8.00 2.3.8.00 2.3.8.00 2.3.8.00 2.3.8.00 3.4.8.01 4.4.8.2.1 5.4.8.0.1 4.4.8.2.1 5.4.8.0.1 4.4.8.2.1 5.4.8.0.1 4.4.8.2.1 5.4.8.0.1 4.4.8.2.1 5.4.8.0.1 4.4.8.2.1 5.4.8.0.1	Raw Flow: Count - Raw m ³ /d	31.00	28.00	31.00	30.00	31.00	30.00	31.00	31.00	30.00	31.00	30.00	31.00	365.00		
Dr. Work, Prod Ruhmerin 1920a 0770a 1920a 0770a 0770	Eff. Flow: Total - Final Effluent m3/d	28,293.00	27,364.00	54,034.00	54,175.00	39,354.16	46,181.76	27,204.41	28,884.63	27,721.21	26,567.78	24,545.18	34,599.15	418,924.28		
cit cit< <td>Eff. Flow: Avg - Final Effluent m³/d</td> <td>912.68</td> <td>977.29</td> <td>1,743.03</td> <td>1,805.83</td> <td>1,269.49</td> <td>1,539.39</td> <td>877.56</td> <td>931.76</td> <td>924.04</td> <td>857.03</td> <td>818.17</td> <td>1,116.10</td> <td></td> <td>1,147.74</td> <td></td>	Eff. Flow: Avg - Final Effluent m ³ /d	912.68	977.29	1,743.03	1,805.83	1,269.49	1,539.39	877.56	931.76	924.04	857.03	818.17	1,116.10		1,147.74	
Car Mar. Car Mar	Eff. Flow: Max - Final Effluent m³/d	1,184.00	1,481.00	2,950.00	2,751.00	1,762.00	3,663.44	1,411.04	1,616.52	1,290.80	1,030.18	1,287.72	2,428.40			3,663.4
Carbonace Ce00 Carbonace Ce00 Carbonace Ce00 Carbonace Ce00 Carbonace Ce00 Carbonace Ce00 Carbonace Ce00 Carbonace Ce00 Carbonace Ce00 Carbonace Ce00 Carbonace Ce00 Carbonace Ce00 Carbonace Ce00 Carbonace Ce00 Carbonace Ce00 Carbonace Ce00 Carbonace Ce00 Carbonace Ce00 Carbonace Ce00 Carbonace Ce00 Carbonace Ce00 Carbonace Ce00 Carbonace Ce00 Carbonace Ce00 Carbonace Ce00 Carbonace Ce00 Carbonace Ce00 Carbonace Ce00 Carbonace Ce00 Carbonace Ce00 Carbonace Ce00 Carbonace Ce00 <th colspan="</td> <td>Eff Flow: Count - Final Effluent m3/d</td> <td>31.00</td> <td>28.00</td> <td>31.00</td> <td>30.00</td> <td>31.00</td> <td>30.00</td> <td>31.00</td> <td>31.00</td> <td>30.00</td> <td>31.00</td> <td>30.00</td> <td>31.00</td> <td>365.00</td> <td></td> <td></td>	Eff Flow: Count - Final Effluent m3/d	31.00	28.00	31.00	30.00	31.00	30.00	31.00	31.00	30.00	31.00	30.00	31.00	365.00		
Bit Agendation Fuel Enversion 2.00 2.20 2.20 2.20 2.00	Carbonaceous Biochemical Oxygen Der	mand: CBOD						ILI								
Bit A standard and ADD - Frait Thinks Sola Add	Eff: Avg cBOD5 - Final Effluent mg/L	< 2.40 <	3.00 <	2.75 <	2.00 <	2.00 <	2.00 <	2.50 <	2.20 <	2.00 <	2.00 <	2.00 <	2.75	<	2.29	< 3.0
Lander Glober - Frank Hanker Vall Lander Glober - Frank Lander Glober - Frank <thlander -="" frank<="" th=""> Lander Glober - Frank</thlander>	Eff: # of samples of cBOD5 - Final Effluent	5.00	4.00	4.00	4.00	5.00	4.00	4.00	5.00	4.00	5.00	4.00	4.00	52.00		
Bitchenkial Orugen Densed: BOS U <thu< th=""> U U U U<</thu<>	Loading: cBOD5 - Final Effluent kg/d	< 2.190 <	2.932 <	4.793 <	3.612 <	2.539 <	3.079 <	2.194 <	2.050 <	1.848 <	1.714 <	: 1.636 <	3.069	<	2.64	< 4.7
Base & d songle of BAGS - Rem reg1 42.00 115.00 64.00 146.00 64.00	Biochemical Oxygen Demand: BOD5							ILJ				الـــالـــــــــــــــــــــــــــــــ			II	
Base 2 densities 6 2000: Raw 1 00 <	Raw: Avg BOD5 - Raw mg/L	82.00	115.00	60.00	44.00	118.00	89.00	146.00	60.00 <	40.00	83.00	53.00	94.00	1	82.00	146.0
Process Bancoal BOOS Table O <td>Raw: # of samples of BOD5 - Raw</td> <td>1.00</td> <td>12.00</td> <td></td> <td></td>	Raw: # of samples of BOD5 - Raw	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	12.00		
Total Superied Solids: TS Control Contro Control <thcontrol< td=""><td>Percent Removal: BOD5 - Raw %</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00 <</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td></td><td></td><td></td></thcontrol<>	Percent Removal: BOD5 - Raw %	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 <	0.00	0.00	0.00	0.00			
Rev. Ag TSS - Rev mg/L 117.00 100.00 400.00 76.00 46.00 200.00 65.00 94.00 140.00 100.00 10.00 <th< td=""><td>Total Suspended Solids: TSS</td><td></td><td></td><td></td><td></td><td></td><td></td><td>ILJ</td><td></td><td></td><td></td><td>الـــالـــــــــــــــــــــــــــــــ</td><td></td><td></td><td>II</td><td></td></th<>	Total Suspended Solids: TSS							ILJ				الـــالـــــــــــــــــــــــــــــــ			II	
Rare of samples of TSS - Rar 100	Raw: Avg TSS - Raw mg/L	117.00	100.00	40.00	203.00	76.00	45.00	200.00	55.00	34.00	140.00	359.00	89.00	1	121.50	359.0
Eff. Ag TSS - Frad Efflaent mg/L 2.68 4.43 4.00 <td>Raw: # of samples of TSS - Raw</td> <td>1.00</td> <td>12.00</td> <td> </td> <td></td>	Raw: # of samples of TSS - Raw	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	12.00		
Eff of samples of SS - Frail Effluent gol 5.00 4.00 5.200 7.230 7.230 </td <td>Eff: Avg TSS - Final Effluent mg/L</td> <td>2.60</td> <td>4.25</td> <td>3.00</td> <td>4.00</td> <td>3.00</td> <td>2.75</td> <td>3.00 <</td> <td>3.00</td> <td>4.00 <</td> <td>2.40</td> <td>2.50 <</td> <td>3.50</td> <td></td> <td>3.13</td> <td>4.2</td>	Eff: Avg TSS - Final Effluent mg/L	2.60	4.25	3.00	4.00	3.00	2.75	3.00 <	3.00	4.00 <	2.40	2.50 <	3.50		3.13	4.2
Lading: T83 Final Ellivent byd 2.373 4.153 5.293 7.223 3.888 4.233 2.635 2.798 3.888 2 2.09 3.888 2 2.09 3.888 2 2.00 3.888 2 3.888 2 2.00 3.888 2 3.888 2 3.888 2 2.00 3.888 2 3.888 2 2.00 3.888 2 3.888 4.00 4.00 4.00 4.00	Eff: # of samples of TSS - Final Effluent	5.00	4.00	4.00	4.00	5.00	4.00	4.00	5.00	4.00	5.00	4.00	4.00	52.00		
Total Phosphorus: TP Raw mgL 2.04 2.28 0.00 0.79 1.68 1.60 1.6	Loading: TSS - Final Effluent kg/d	2.373	4.153	5.229	7.223	3.808	4.233	2.633 <	2.795	3.696 <	2.057	2.045 <	3.906		3.68	7.2
Raw: Ang TP - Raw mgL 2.04 2.23 0.80 0.73 1.68 1.88 1.62 1.02 2.07 1.47 1.83 1.65 3.43 Raw: Ang TP - Raw 1.00 0.00	Total Phosphorus: TP	1[1[1]		111	LIL		LJL_J	ILJ		1		JLJL_JL		I	1 1	
Rew. # of samples of TP - Raw 1.00	Raw: Avg TP - Raw mg/L	2.04	2.29	0.80	0.79	1.08	1.80	3.05	1.52	1.02	2.07	1.47	1.83	1	1.65	3.0
Eff. Ang TP - Final Effluent mgL 0.08 2 0.08 4 0.08	Raw: # of samples of TP - Raw	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	12.00		
Eff: # of samples of TP - Final Effluent 5.00 4.00 4.00 5.00 5.00 <th< td=""><td>Eff: Avg TP - Final Effluent mg/L</td><td>0.05 <</td><td>0.05</td><td>0.05 <</td><td>0.03</td><td>0.05</td><td>0.05</td><td>0.05</td><td>0.06</td><td>0.05</td><td>0.05 <</td><td>0.04</td><td>0.07</td><td></td><td>0.05</td><td>0.0</td></th<>	Eff: Avg TP - Final Effluent mg/L	0.05 <	0.05	0.05 <	0.03	0.05	0.05	0.05	0.06	0.05	0.05 <	0.04	0.07		0.05	0.0
Leading: TP - Final Effluent kg/d 1.485 1.388 2.702 1.625 1.988 2.308 1.388 1.733 1.388 1.328 0.982 2.421 2.059 0 Nitrogen Series Raw: Avg TNN - Raw mg/L 2.040 2.130 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.00	Eff: # of samples of TP - Final Effluent	5.00	4.00	4.00	4.00	5.00	4.00	4.00	5.00	4.00	5.00	4.00	4.00	52.00	1	
Nitrogen Series Raw: Avg TKN - Raw mg/L 20.40 21.30 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.01 10.01 10.00	*Loading: TP - Final Effluent kg/d	1.415	1.368	2.702	1.625	1.968	2.309	1.360	1.733	1.386	1.328	0.982	2.421	20.598		
Raw: Avg TKN - Raw mg/L 20.4 21.3 10.0	Nitrogen Series			111	II	11_1				11]]		I		
Raw: # of samples of TKN - Raw 1.00 1 1.00 1 1.00 1 1.00 <t< td=""><td>Raw: Avg TKN - Raw mg/L</td><td>20.40</td><td>21.30</td><td>10.10</td><td>10.10</td><td>12.10</td><td>20.80</td><td>28.00</td><td>15.60</td><td>10.20</td><td>18.50</td><td>12.30</td><td>18.70</td><td>II.</td><td>16.51</td><td>28.0</td></t<>	Raw: Avg TKN - Raw mg/L	20.40	21.30	10.10	10.10	12.10	20.80	28.00	15.60	10.20	18.50	12.30	18.70	II.	16.51	28.0
Eff: Arg TAN - Final Effluent mg/L 5.0 I 4.73 2.50 I 4.73 2.50 I 4.73 0.26 I 9.02 I 0.10 I 0.00 I 0.00 <th< td=""><td>Raw: # of samples of TKN - Raw</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>12.00</td><td>1</td><td></td></th<>	Raw: # of samples of TKN - Raw	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	12.00	1	
Eff: # of samples of TAN - Final Effluent 5.00 4.00 4.00 4.00 5.00 4.00 5.00 4.00 5.00 4.00 5.00 4.00 5.00 4.00 5.00 6 6.00 6 6.00 6 6.00 6 6.00 6 6.00 6 6.00 6 6.00 6 6.00 6 6.00 6 6.00 6 6.00 6 6.00 6 6.00 6 6.00 6 6.00 6 6.00	Eff: Avg TAN - Final Effluent mg/L	5.20	4.73	2.50	1.93 <	0.26 <	0.10 <	0.10 <	1.26 <	0.65 <	0.12 <	< 0.23 <	0.20		1.46	5.2
Loading: TAN - Final Effluent kg/d 4.764 4.668 4.358 3.376 < 0.330 < 0.154 < 0.088 < 0.174 < 0.061 < 0.184 < 0.184 < 0.223 1.67 4.76 Eff: Arg NO3-N - Final Effluent mg/L 8.53 9.26 5.48 6.55 12.87 13.78 21.50 19.60 17.88 17.14 16.10 11.63 13.37 21.5 Eff: # of samples of NO3-N - Final Effluent 0.07 0.058 0.09 0.08 < 0.156 0.09 0.08 0.09 0.09 0.28 0.56 0.167 0.09 0.09 0.09 0.08 0.09 0.09 0.08 0.09 0.09 0.08 0.09 0.09 0.08 0.09 0.09 0.08 0.09 0.09 0.08 0.09 0.09 0.08 0.09 0.09 0.08 0.09 0.09 0.08 0.09 0.09 0.08 0.09 0.09 0.08 0.09 0.09 0.08 0.09 0.09 0.08 0.09 0.09 0.08 0.09 0.09 0.09 0.09 0.09 0.09	Eff: # of samples of TAN - Final Effluent	5.00	4.00	4.00	4.00	5.00	4.00	4.00	5.00	4.00	5.00	4.00	4.00	52.00		
Eff: Arg NO3-N - Final Effluent mg/L 8.63 9.26 5.48 6.55 12.87 12.87 21.50 19.60 17.88 17.14 16.10 11.63 13.37 21.50 Eff: # of samples of NO3-N - Final Effluent 5.00 4.00 4.00 5.00	Loading: TAN - Final Effluent kg/d	4.746	4.618	4.358	3.476 <	0.330 <	0.154 <	0.088 <	1.174 <	0.601 <	0.103 <	. 0.184 <	0.223		1.67	4.7
Eff: # of samples of NO3-N - Final Effluent 5.00 4.00 4.00 5.00	Eff: Avg NO3-N - Final Effluent mg/L	8.53	9.26	5.48	6.55	12.87	13.79	21.50	19.60	17.98	17.14	16.10	11.63		13.37	21.5
Eff: Arg NO2-N - Final Effluent mg/L 0.67 0.68 0.09 0.28 0.66 0.15 0.29 1.17 0.45 0.89 0.25 0.15 0.46 1.1 Eff: # of samples of NO2-N - Final Effluent 5.00 4.00 <t< td=""><td>Eff: # of samples of NO3-N - Final Effluent</td><td>5.00</td><td>4.00</td><td>4.00</td><td>4.00</td><td>5.00</td><td>4.00</td><td>4.00</td><td>5.00</td><td>4.00</td><td>5.00</td><td>4.00</td><td>4.00</td><td>52.00</td><td></td><td></td></t<>	Eff: # of samples of NO3-N - Final Effluent	5.00	4.00	4.00	4.00	5.00	4.00	4.00	5.00	4.00	5.00	4.00	4.00	52.00		
Eff: # of samples of NO2-N - Final Effluent 6.00 4.00 4.00 5.00	Eff: Avg NO2-N - Final Effluent mg/L	0.67	0.58	0.09	0.28	0.56 <	0.15	0.29 <	1.17 <	0.45	0.89	0.25 <	0.15		0.46	1.1
Disinfection 2.49 3.72 10.77 19.25 2.64 30.40 12.68 22.76 5.83 1.74 1.68 2.38 1.64 2.30 1.65 2.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 5.00 4.00 4.00 5.00 4.00 <td>Eff: # of samples of NO2-N - Final Effluent</td> <td>5.00</td> <td>4.00</td> <td>4.00</td> <td>4.00</td> <td>5.00</td> <td>4.00</td> <td>4.00</td> <td>5.00</td> <td>4.00</td> <td>5.00</td> <td>4.00</td> <td>4.00</td> <td>52.00</td> <td></td> <td>1</td>	Eff: # of samples of NO2-N - Final Effluent	5.00	4.00	4.00	4.00	5.00	4.00	4.00	5.00	4.00	5.00	4.00	4.00	52.00		1
Eff: GMD E. Coli - Final Effluent 2.49 3.72 10.77 19.25 2.64 30.40 12.68 22.76 5.83 1.74 1.68 2.38 Eff: # of samples of E. Coli - Final Effluent 5.00 4.00 4.00 5.00	Disinfection		LIL	nIL_I	LIL_	ILILJ									۰	
Eff: # of samples of E. Coli • Final Effluent 5.00 4.00 4.00 5.00 4.00 5.00 4.00 5.00 4.00 5.00 4.00 5.00 4.00 5.00 4.00 5.00 5	Eff: GMD E. Coli - Final Effluent cfu/100mL	2.49	3.72	10.77	19.25	2.64	30.40	12.68	22.76	5.83	1.74	1.68	2.38			
	Eff: # of samples of E. Coli - Final Effluent	5.00	4.00	4.00	4.00	5.00	4.00	4.00	5.00	4.00	5.00	4.00	4.00	52.00		1

*Loading: TP-Final Effluent is a total annual loading calculated by adding the total monthly load discharged each month for each calendar year as defined in ECA No. 8497-8D3TU7.

Appendix II

Calibration Reports

ABB MEASUREMENT & ANALYTICS | TEST REPORT

ABB Ability Verification for measurement devices

Verification Report for:

WaterMaster

Measurement made easy

Measurement & Analytics Service

Installation Details

Meter Owner	Ramara
Machine Name	Lagoon City PS
Medium	

Customer Details

Site Address Telephone Email

Operator Details

Date and Time	09-06-2022 14:00:33
Operator's Name	Admin
Operator's Signature	

Overall Status - Passed

Sensor Information

Sensor Serial No.	5022909
Sensor SAP/ERP No.	3K220000196136
Sensor Type	WM Full Bore
Sensor Size	DN 200
Q3	1000.000 m³/hr
Calibration Accuracy	OIML Class 2
Sensor Calibration Factors	113.841 %, -0.550 mm/s
Date of Manufacture	07:50:17 05/12/2013
Sensor User Span/Zero	-100.000 %; 0.000 mm/s
User Flow Cutoff/Hysteresis	0.000 %; 20.000 %
Coil Current	180.000 mA
Coil Inductance	99.734 mH
Coil / Loop Resistance	32.337 Ohm

Transmitter Information					
Transmitter Serial No	9023016				
Transmitter SAP/ERP No.	3K220000382532				
Application Version	V01.06.00 03/03/15				
MSP Version	01.00.00				
Date of Manufacture	12:54:55 17/10/2016				
Tx Gain Adjustment	0.047 %				
OIML Accuracy Alarms	OFF				
Mains Freq	50.000 Hz				
Qmax	1000.000 m³/hr				
Pulses/Unit	50.000				
FS Freq	5000.000 Hz				
Pulses Limit Freq	100.000 Hz				
Meter Mode	Forward Only				

Summary Verification	Summary Verification of the Sensor					
Summary of Results						
Coil Group	PASS					
Electrode Group	PASS					
Sensor Group	PASS					
Transmitter Signal	PASS					
Transmitter Driver	PASS					
Configuration	PASS					
Sensor Data						
Coil Inductance Shift	-0.393 %					
Cable Length	0 m					
Electrode Backoff Voltage	0.389 V					
Electrode Differential Voltage	-0.065 V					
Pipe Status	Full Pipe					

Summary Verification of the Transmitter							
Output G	roup						
Current C	Dutput 31/32	PASS					
Applied	Measure	ed	Result				
4 mA	4.000 m	۱A	PASS				
12 mA	11.971 r	mA	PASS				
20 mA	19.981 r	nA	PASS				
Pulse Ou	tput 41/42	NOT EX	KECUTED				
Applied	Measure	ed	Result				
5250 Hz							
2625 Hz							
Pulse Ou	tput 51/52	NOT EX	(ECUTED				
Applied	Measure	ed	Result				
5250 Hz							
2625 Hz							
Totalizer I	nformation						
	Start	End	Difference				
Forward	2372168.088 m ³	2372172.089 m ³	4.000 m³				
Reverse	416.848 m³	416.848 m³	0.000 m³				
Net	2455412.693 m ³	2455416.574 m ³	3.881 m³				

AS FOUND CERTIFICATION

FORWARD FLOW DIRECTION

PASS

CLIENT DETA	L				EQUIPMENT DETAIL
CUSTOMER	OCWA – Kawartha I	_akes ⊦	lub	[MUT] MANUFACTURER	Krohne
CONTACT	Nick Leroux			MODEL	IFC 300
	Senior Operations N	lanager		SERIAL NUMBER	A08 03059
	123 East St S			FUSE	Lighting Panel #14
	Bobcaygeon ON, K0	M 1A0			
	P: 705-623-7278			PLANT ID	Brechin Community Park
	E: nleroux@ocwa.co	om		METER ID	Pump Station #08
				FIT ID	N/A
				CLIENT TAG	N/A
				OTHER	N/A
VER. BY - FM	Travis Krayetski			GPS COORDINATES	N 44°32.760 W 079°10.769
Quality Mana	gement Standards I	nforma	ition -		
Reference eq	uipment and instrur	nentati	on used to	VERIFICATION DATE	June 9th 2022
conduct this v	erification test is for	und in o	our AC-	CAL. FREQUENCY	Annual
QMS docume	ent at the time this te	est was	;	CAL. DUE DATE	June 2023
PROGRAMMIN	IG PARAMETERS			FORWARD	TOTALIZER INFORMATION
DIAMETER (DI)	mm	150	AS FOUND	643052.1 M3
F.S. FLOW - M	ÁG L	PS	160.1	AS LEFT	643055.8 M3
F.S. RANGE - 0	D/P l	PS	60.000	DIFFERENCE	3.7 M3
CAL. k-FACTO	R	GK	2.97280		TEST CRITERIA
				AS FOUND CERTIFICATION	ON TEST Yes
				FORWARD FLOW DIREC	TION Yes
				ALLOWABLE [%] ERROR	15
					COMPONENTS TESTED
				CONVERTER DISPLAY	yes
				mA OUTPUT	yes
				TOTALIZER	Yes
				ACCURACY BASED ON [% o.r.] yes
Zero Offset Flor	w l	PS	0.0000	ERROR DOCUMENTED IN T	HIS REPORT; BASED ON % o.r.
FLOW TUBE S	IMULATION				

			0.0	0.5	1.0	2.0	m/s
			0.0	5.0	10.0	20.0	% F.S. Flow
			0.0	13.3	26.7	53.4	% F.S. Range
REF. FLOW RATE			0.000	8.01	16.01	32.02	LPS
MUT [Reading]			0.004	7.9	16.7	31.6	LPS
MUT [Difference]			0.004	-0.095	0.688	-0.425	LPS
MUT [% Error]			n/a	-1.19	4.30	-1.33	%
mA OUTPUT			4.000	6.135	8.270	12.540	mA
MUT [Reading]	min. 4.000	mA	4.000	6.145	8.353	12.461	mA
MUT [Difference]	max. 20.000	mA	0.000	0.010	0.083	-0.079	mA
MUT [% Error]			0.00	0.16	1.00	-0.63	%
TOTALIZER - REF. FLC	OW RATE					32.025	LPS
TOTALIZER [MUT]						2	M3
TEST TIME						63.10	SECONDS
CALC. TOTALIZER						2.021	M3
ERROR						-1.04	%

COMMENTS

QU/	LITY MANAGEME	NT STANDARDS INFO).	RESU	JLTS	
[QM	S] INFORMATION	IDENT. ID #		TEOT	AVG	PASS
[REF	ERENCE] FTS	KRO 1		TEST	% o.r.	FAIL
PRC	CESS METER	PM AZ		DISPLAY	0.59	PASS
ANA	LOG METER	AM N/A		mA OUTPUT	0.13	PASS
STO	P WATCH	SW YES		TOTALIZER	-1.04	PASS

This report reflects the test results of the overall accuracy for the above flow converter using the specified manufacturers flow tube simulator to within the specified tolerance as identified within this report.

Т

					PASS				
CLIENT DETA	L			EQUIPMENT DETAIL					
CUSTOMER OCWA – Kawartha Lakes Hub CONTACT Nick Leroux				[MUT] MANUFACTURER Grey MODEL OC					
Senior Operations Manager 123 East St S			CONVERTER SERIAL NU	JMBER 17849					
	Bobcaygeon ON, K0	DM 1A0							
	P: 705-623-7278			PLANT ID	Lagoon City				
	E: nleroux@ocwa.co	om		METER ID	Influent Flow				
				FIT ID	NA				
				CLIENT TAG	NA				
				OTHER	NA				
VER. BY - FM	Travis Krayetski			GPS COORDINATES	N 44°33.467 W 079°12.436				
Quality Mana	gement Standards I	Information -							
Reference eq	uipment and instrur	mentation used	to		June 9th 2022				
conduct this v	verification test is for	und in our AC-		CAL FREQUENCY	Annual				
				CAL. DUE DATE	June 2023				
PROGRAMMIN	IG PARAMETERS				TOTALIZER				
NOTCH ANGLI	Ε(φ)	inches	45	AS FOUND	119096 M3				
EMPTY DISTA	NCE, TX to notch	m	0.662	AS LEFT	119096 M3				
TRANSDUCER	R (TX), to sump flo	m	0.78	DIFFERENCE	0 M3				
SUMP LEVEL,	zero flow	m	0.118		TEST CRITERIA				
,				AS FOUND CERTIFICAT	ION TEST Yes				
MAX. HEAD		m	0.300	ALLOWABLE [%] ERROF	R 15				
BLANKING DIS	STANCE	m	0.362						

COMPONENTS TESTED

CONVERTER DISPLAY	yes
mA OUTPUT	yes
TOTALIZER	no
ACCURACY BASED ON [% o.r.]	yes
ERROR DOCUMENTED IN THIS REPORT: BASED	0 ON % or

Ultrasonic Sensor is not installed high enough, to ensure full scale flow conditions

m

M3/H

M3/H

FLOWMETRIX

AS FOUND TEST RES	SULTS						
	Ī	0.0	3.1	17.7	48.7	100.0	% F.S. Range
		0.000	0.075	0.150	0.225	0.300	m
REF. FLOW RATE		0.0	3.2	17.9	49.4	101.4	M3/H
MUT [Reading]		0.0	3.1	17.8	49.0	100.5	M3/H
MUT [Difference]		0.0	0.0	-0.2	-0.4	-0.9	M3/H
MUT [% Error]		0.0	-0.9	-0.9	-0.9	-0.9	%
mA OUTPUT		4.000	4.500	6.828	11.794	20.000	mA
MUT [Reading]	min. 4.000 mA	4.000	4.500	6.832	11.806	20.023	mA
MUT [Difference]	max. 20.000 mA	0.000	0.000	0.004	0.012	0.023	mA
MUT [% Error]		0.00	0.00	0.05	0.10	0.11	%
TOTALIZER - REF. FL	OW RATE						
TOTALIZER [MUT]							
TEST TIME							
CALC. TOTALIZER							
ERROR							

0.000

101.4

101.4

COMMENTS	QUALITY MANAGEME	RES	RESULTS			
-Results based on Internal Simulation not actual flow.	[QMS] INFORMATION	IDENT.	ID #	TEST	AVG	PASS
-Head Level was verified with a 1 point live flowrate.	[REFERENCE] LEVEL	Sim. BOARD	n/a	IE31	% o.r.	FAIL
	PROCESS METER	PM	2	DISPLAY	-0.87	PASS
	STOP WATCH	SW	n/a	mA OUTPUT	0.05	PASS
				TOTALIZER	N/A	N/A

This report reflects the test results of the overall accuracy for the above flow converter using the specified manufacturers flow tube simulator to within the specified tolerance as identified within this report.

DEAD ZONE

MAX. FLOW

F.S. RANGE - O/P

ROSEMOUNT

Verification Report

AS FOUND CERTIFICATION

FORWARD FLOW DIRECTION

PASS

CLIENT DETAI	L						EQI	JIPMENT D	ETAIL	
CUSTOMER	OCWA – Kawai	rtha Lakes Hub			[MUT] MANUFACTURE	R	Rose	mount	
CONTACT	Nick Leroux				MOD	EL			8712	
	Senior Operatio	ns Manager			CON	/ERTER SERIAL	NUMBER	080602	45142	
	123 East St S									
	Bobcaygeon ON	I, KOM 1A0								
	P: 705-623-727	8			PLAN	TID		Lagoon Cit	ty STP	
	E: nleroux@ocv	va.com			METER ID			Final Effluer	nt Flow	
					FIT ID)			NA	
					CLIE	NT TAG			NA	
	T				OTHE		NI 44800 /		NA	
VER. BY - FM	I ravis Krayetsk	1			GPS	COORDINATES	N 44-33.4	467 W 079	12.436	
Quality Manag	gement Standa	rds Informatio	n					luna Ott	- 0000	
Reference eq	upment and ins	strumentation	used to		VERI			June 9tr		
OMS docume	enication test i	nis test was	AC-		CAL.			/		
Qine decume					CAL.	DUEDATE		JUIR	2023	
PROGRAMMIN	IG PARAMETER	S				FORWA	RD TOTALIZE		ATION	
DIAMETER (DI	N)	mm	300		AS FO	OUND		1371409	M3	
F.S. FLOW - M	ÁG	LPS	859.000		AS LE	EFT		1371521	M3	
F.S. RANGE - 0	D/P	LPS	600.000		DIFF	ERENCE		112	M3	
TUBE CAL. FA	CTOR	11	08905010807005			TEST CRI	TERIA			
					AS FO	OUND CERTIFIC	ATION TEST		Yes	
					FOR	VARD FLOW DIR	ECTION		Yes	
					ALLO	WABLE [%] ERR	OR		5	
							COMPO	ONENTS TE	STED	
					CON	/ERTER DISPLA	Y		yes	
				mA OUTPUT				yes		
					IOIA				yes	
		10	0001501000000		ACCU		N [% 0.r.]		yes	
VERIFICATOR	CAL. FACTOR	10	00015010000000		ERRC	IN DOCUMENTED		I, BASED ON	N 70 U.I.	
			0		3	10	30	ft/s	5	
DISPLAY			0.00		3.00	10.00	30.00	ft/s	3	
MUT Reading			0.00		3.00	10.00	30.00	ft/s	5	
MUT % Error			n/a		0.00	0.00	0.00	%		
mA OUTPUT			4.000		5.600	9.333	20.000	mA	۹.	
MUT Reading	4	mA	4.000		5.602	9.344	20.028	mA	۹.	
MUT % Error	20	mA	0.00		0.04	0.11	0.14	%		
TOTALIZER							30.00	ft/s	6	
TEST Accumula	ation						2100.00	ft		
TIME			QUALI	TY MANAGEME	NT STANDAR	DS INFO.	69.91	secor	nds	
CALC. Velocity			[QMS] I	NFORMATION	IDENT.	<u>ID #</u>	30.04	ft/s	5	
% Error				KENCEJ FTS	RUS	1	0.13	%		
			PROCE	PROCESS METER		12				
			ANALO		AM	n/a				
* 4 11			STOPV	VAICH	5W	Yes				
All values are 1	ioi "As Found" Va	aues.								

RESULTS								
TEST	AVG	PASS						
TEST	% o.r.	FAIL						
DISPLAY	0.00	PASS						
mA OUTPUT	0.10	PASS						
TOTALIZER	0.13	PASS						

This report reflects the test results of the overall accuracy for the above flow converter using the specified manufacturers flow tube simulator to within the specified tolerance as identified within this report.

COMMENTS

[MUT] AS FOUND

[MUT] AS LEFT

FAIL FAIL

CUSTOMER CONTACT	OCWA – Kawartha Lakes Hub Nick Leroux Senior Operations Manager 123 East St S Bobcaygeon ON, K0M 1A0 P: 705-623-7278 E: nleroux@ocwa.com	[MUT] MANUFACTURER MODEL SERIAL NUMBER CLIENT TAG LOCATION OTHER GPS COORDINATES	ABB AX460/600010/STD 3K22000652669 n/a Lagon City STP Final Effluent Flow N 44°33.467 W 079°12.436
VER. BY	Travis Krayetski	TOLERANCE [pH]	0.1
Quality Manager Standards, re instrumentation the lot#, and e	gement Standards Information - ference equipment, and on used to conduct this test outlining expiry date is found in our current	VERIFICATION DATE CAL. FREQUENCY CAL. DUE DATE	June 9th 2022 Annual June 2023

pH VERIFICATION NIST TRACEABLE (BUFFERS)

BEFORE CALIBRATION

REF	ERENCE BUF	FER	[MUT] READINGS					
pН	TEMP.	pН	pН	TEMP.	pH - ERROR	PASS		
BUFFER	°C	CORRECTED		°C	DIFF.	FAIL		
4.01	16.2	4.00	4.88	16.2	0.88	FAIL		
7.01	16.2	7.04	7.57	16,2	0.53	FAIL		
•	•			•	RESULT	FAIL		

AFTER CALIBRATION

REF	ERENCE BUF	FER	[MUT] READINGS					
pН	TEMP.	pН	pН	TEMP.	pH - ERROR	PASS		
BUFFER	°C	CORRECTED		°C	DIFF.	FAIL		
4.01	16.2	4.00	4.44	16.2	0.44	FAIL		
7.01	16.2	7.04	7.34	16.2	0.30	FAIL		
		•			RESULT	FAIL		

COMMENTS

Slope respose extremately slow for Buffer 4 and 7 The electrode pair is becoming fatigued Probe replacement is required

[QMS] INFORMATION	<u>ITEM</u>	<u>ID #</u>
[REFERENCE] 4.01 BUFFER 7.01 BUFFER TEMPERATURE REF.	pHBUFF4 pHBUFF7 DDTEMP	1 1 1

NIST Traceable Buffers were used to confirm the overall accuracy of this instrument. "AS FOUND" readings and "AS FOUND" readings are reported within this report. A temperature device was used to measure and record the buffer temperature to correct for pH values due to the effects related to buffer temperature.

Appendix III

Biosolids Summary

Ontario Clean Water Agency Biosolids Quality Report - Liquid Digestor Type: AEROBIC

Solids and Nutrients

LAGOON CITY WASTEWATER TREATMENT PLANT

01/01/2022 to 12/01/2022

Facility: Period:

Facility Owner: Facility Classification:	Municipality: The Township Class 2 Wastewater Treatme	of Ramara ent										
Month	Total Sludge Hauled (m3)	Avg. Total Solids (mg/L)	Avg. Volatile Solids (mg/L)	Avg. Total Phosphorus (mg/L)	Ammonia (mg/L)	Nitrate (mg/L)	Nitrite (mg/L)	TKN (mg/L)	Ammonia + Nitrate (mg/L)	Potassium (mg/L)		
Site	LAGOON CITY WASTEWATE	R TREATMENT PL	ANT		•	•	•					
Station	Bslq Station only	slq Station only										
Parameter Short Name	HauledVol	тѕ	vs	ТР	NH3p_NH4p_N	NO3-N	NO2-N	ткл	calculation in	к		
T/s	IH Month.Total	Lab Published Month Mean	Lab Published Month Mean	Lab Published Month Mean	Lab Published Month Mean	Lab Published Month Mean	Lab Published Month Mean	Lab Published Month Mean	report - no T/S	Lab Published Month Mean		
Jan		28,200.000	15,200.000	720.000	5.200	0.400	0.700	788.000	2.800	63.000		
Feb		26,600.000	14,300.000	740.000	7.900	1.000	0.600	802.000	4.450	63.000		
Mar		30,400.000	16,400.000	700.000	2.800	1.300	0.600	1,040.000	2.050	67.000		
Apr		33,100.000	17,600.000	694.000	8.000	0.900	5.800	1,090.000	4.450	68.000		
Мау	585.000	34,400.000	18,400.000	800.000	10.800	5.800	0.400	816.000	8.300	74.000		
Jun		23,200.000	12,300.000	470.000	16.600	0.300	0.300	589.000	8.450	45.000		
Jul		35,000.000	18,600.000	840.000	31.700	0.300	0.200	992.000	16.000	70.000		
Aug		28,700.000	13,300.000	400.000	12.200	1.400	1.400	681.000	6.800	40.000		
Sep		31,500.000	16,600.000	790.000	37.800	0.500	0.600	948.000	19.150	61.000		
Oct	720.000	32,200.000	17,700.000	790.000	52.300	1.100	3.100	854.000	26.700	56.000		
Nov		27,800.000	15,500.000	570.000	2.800	0.400	0.700	734.000	1.600	47.000		
Dec		24,000.000	13,400.000	590.000	23.500	0.300	0.700	632.000	11.900	55.000		

Average	652.500	29,591.667	15,775.000	675.333	17.633	1.142	1.258	830.500	9.388	59.083
Total	1,305.000	355,100.000	189,300.000	8,104.000	211.600	13.700	15.100	9,966.000	112.650	709.000

Ontario Clean Water Agency Biosolids Quality Report - Liquid Digestor Type: AEROBIC

Metals and Criteria

Facility: LAGOON CITY WASTEWATER TREATMENT PLANT Period: 01/01/2022 to 12/01/2022

Month	Arsenic (mg/L)	Cadmium (mg/L)	Cobalt (mg/L)	Chromium (mg/L)	Copper (mg/L)	Mercury (mg/L)	Molybdenum (mg/L)	Nickel (mg/L)	Lead (mg/L)	Selenium (mg/L)	Zinc (mg/L)
Site	LAGOON CITY WA	STEWATER TREATM	IENT PLANT								
Parameter Short Name	As	Cd	Co	Cr	Cu	Hg	Мо	Ni	Pb	Se	Zn
T/s	Lab Published Month Mean										
Jan	0.200	0.022	0.040	0.450	5.300	0.009	0.070	0.420	0.200	0.100	16.000
Feb	0.200	0.019	0.030	0.390	4.300	0.008	0.050	0.270	0.200	0.100	13.000
Mar	0.200	0.024	0.040	0.480	5.300	0.012	0.060	0.330	0.200	0.100	16.000
Apr	0.200	0.024	0.040	0.440	5.000	0.010	0.050	0.330	0.200	0.100	14.000
May	0.200	0.021	0.040	0.500	5.400	0.012	0.060	0.360	0.200	0.100	16.000
Jun	0.100	0.012	0.020	0.310	3.800	0.006	0.050	0.240	0.100	0.100	10.000
lut	0.200	0.022	0.050	0.530	6.100	0.011	0.080	0.380	0.200	0.100	17.000
Aug	0.100	0.010	0.020	0.250	2.900	0.007	0.050	0.200	0.100	0.100	9.000
Sep	0.200	0.021	0.050	0.520	6.100	0.012	0.070	0.380	0.300	0.100	17.000
Oct	0.200	0.020	0.040	0.500	6.200	0.011	0.080	0.410	0.300	0.100	17.000
Nov	0.200	0.020	0.030	0.300	5.100	0.009	0.050	0.270	0.300	0.100	13.000
Dec	0.100	0.010	0.030	0.320	4.600	0.005	0.110	0.250	0.200	0.100	13.000

Average	0.175	0.019	0.036	0.416	5.008	0.009	0.065	0.320	0.208	0.100	14.250
Max. Permissible Metal Concentrations (mg/kg of Solids)	170.000	34.000	340.000	2,800.000	1,700.000	11.000	94.000	420.000	1,100.000	34.000	4,200.000
Metal Concentrations in Sludge (mg/kg)	5.914	0.634	1.211	14.052	169.248	0.315	2.197	10.814	7.040	3.379	481.554